code-with-codex

📁 chaorenex1/coding-workflow 📅 2 days ago
1
总安装量
1
周安装量
#53982
全站排名
安装命令
npx skills add https://github.com/chaorenex1/coding-workflow --skill code-with-codex

Agent 安装分布

trae 1
qoder 1
trae-cn 1
opencode 1
cursor 1
codex 1

Skill 文档

Code with Codex

Use memex-cli to leverage Codex for code generation with memory and resume support.


Mandatory Execution Protocol

⚠️ CRITICAL: Claude MUST complete ALL applicable steps below BEFORE invoking memex-cli. Skipping any step is a protocol violation.

Step 1: Complexity Assessment (ALL Levels)

Required for: L1-L5

Use decision tree to determine complexity level:

Start
  ├─ Single file, <100 lines? → L1
  ├─ Reusable functions, no external deps? → L2
  ├─ Production module with tests?
  │   ├─ Standard CRUD/API? → L3
  │   └─ Complex algorithm? → L4
  └─ Multi-module/microservice? → L5

Output: Determined level (L1-L5) with reasoning.

Step 2: Task Decomposition (L3+ MANDATORY)

Required for: L3, L4, L5

Claude MUST decompose the task into subtasks:

  1. Identify all components/modules/files to be created
  2. Split into independent subtasks (each <300 lines output)
  3. Assign unique task IDs
  4. Establish dependency relationships

Skip condition: Only if task is truly atomic (single file, single responsibility)

Step 3: Dependency Analysis (L2+ MANDATORY)

Required for: L2, L3, L4, L5

Claude MUST analyze dependencies:

  1. File dependencies: Which files import/require others?
  2. Task dependencies: Which tasks must complete before others?
  3. Build DAG: Create directed acyclic graph of execution order

Output: Dependency graph showing parallel groups.

Step 4: Execution Plan Report (ALL Levels)

Required for: L1-L5

Claude MUST report to user before execution:

## 📋 Execution Plan Report

### Complexity Assessment
- **Level**: L[X] ([level name])
- **Model**: [selected model]
- **Reasoning**: [why this level]

### Task Decomposition (L3+)
| ID | Description | Est. Lines | Dependencies |
|----|-------------|------------|--------------|
| task-1 | [desc] | ~100 | - |
| task-2 | [desc] | ~150 | task-1 |

### Dependency Graph (L2+)

Phase 1 (Parallel): [task-1] [task-2] ↓ ↓ Phase 2 (Sequential): [task-3 depends on 1,2]


### Execution Summary
- **Total subtasks**: N
- **Parallel groups**: M
- **Estimated phases**: P

Step 5: Workdir Resolution (AUTO)

Required for: ALL tasks

Claude MUST resolve workdir to project root:

git rev-parse --show-toplevel

Rule: workdir = Git 项目根目录(绝对路径)

Output: Report resolved workdir in Execution Plan.

Pre-Execution Checklist

Before invoking memex-cli, Claude MUST confirm:

  • ✅ Complexity level determined (L1-L5)
  • ✅ Model selected based on level
  • ✅ (L2+) Dependencies analyzed
  • ✅ (L3+) Task decomposed into subtasks
  • ✅ Workdir resolved (via git root)
  • ✅ Execution plan reported to user

⛔ VIOLATION: Directly passing L3/L4/L5 task to Codex without decomposition is a protocol violation. Always decompose first.


Execution Strategy

Level Model files-mode Dependency Analysis Task Decomposition Execution
L1 gpt-5.1-codex-mini ref ❌ ❌ Serial
L2 gpt-5.1-codex-max ref ✅ ❌ Parallel
L3 gpt-5.2-codex ref ✅ ✅ Parallel
L4 gpt-5.2 ref ✅ ✅ Parallel
L5 gpt-5.2 ref ✅ ✅ Parallel

Automated Capabilities

Capability Description Active Level
Auto Model Selection Automatically select optimal model based on complexity L1-L5
Auto Grading Evaluate task complexity via Decision Tree L1-L5
Dependency Analysis Analyze task/file dependencies, build DAG L2+
Task Decomposition Auto-split large tasks into subtasks L3+
Parallel Execution Execute independent subtasks in parallel L2+

Dependency Analysis Guide (L2+)

System automatically analyzes dependencies between tasks/files and builds execution DAG.

How It Works

Input: Multiple related tasks
         ↓
┌─────────────────────────────┐
│ 1. Parse task descriptions  │
│ 2. Identify file references │
│ 3. Detect implicit deps     │
│ 4. Build dependency graph   │
└─────────────────────────────┘
         ↓
Output: Execution DAG with parallel groups

Dependency Detection Rules

Type Detection Method Example
Explicit dependencies field dependencies: task-1, task-2
File-based Output→Input file match Task A outputs config.py → Task B imports it
Import-based Module import analysis from utils import helper → depends on utils
Sequential Keyword detection “based on”, “after”, “using result of”

L2 Example: Parallel Validators with Dependencies

memex-cli run --backend codex --stdin <<'EOF'
---TASK---
id: email-validator
backend: codex
model: gpt-5.1-codex-max
workdir: ./utils
---CONTENT---
编写邮箱验证函数 (validators/email.py)
---END---
---TASK---
id: phone-validator
backend: codex
model: gpt-5.1-codex-max
workdir: ./utils
---CONTENT---
编写手机号验证函数 (validators/phone.py)
---END---
---TASK---
id: validator-index
backend: codex
model: gpt-5.1-codex-max
workdir: ./utils
dependencies: email-validator, phone-validator
---CONTENT---
创建 validators/__init__.py,导出所有验证函数
---END---
EOF

Execution Flow:

┌─────────────────┐  ┌─────────────────┐
│ email-validator │  │ phone-validator │  ← Parallel (no deps)
└────────┬────────┘  └────────┬────────┘
         │                    │
         └──────────┬─────────┘
                    ↓
         ┌─────────────────┐
         │ validator-index │  ← Sequential (depends on both)
         └─────────────────┘

Task Decomposition Guide (L3+)

System automatically decomposes large tasks into manageable subtasks.

How It Works

Input: Complex task description
         ↓
┌─────────────────────────────┐
│ 1. Analyze task scope       │
│ 2. Identify components      │
│ 3. Generate subtask list    │
│ 4. Establish dependencies   │
│ 5. Assign to parallel groups│
└─────────────────────────────┘
         ↓
Output: DAG of subtasks

Decomposition Triggers

Trigger Detection Action
Multi-file “create X files”, file list Split by file
Multi-component “module with A, B, C” Split by component
Layered “model, service, controller” Split by layer
Test + Impl “implement and test” Split impl → test

L3 Example: HTTP Client with Auto-Decomposition

Input Task:

memex-cli run --backend codex --stdin <<'EOF'
---TASK---
id: http-client-module
backend: codex
model: gpt-5.2-codex
workdir: ./lib
timeout: 5400
---CONTENT---
创建完整的 HTTP 客户端模块:
1. 核心客户端类 (http_client.py)
2. 重试策略 (retry.py)
3. 拦截器系统 (interceptors.py)
4. 单元测试 (test_http_client.py)
---END---
EOF

Auto-Decomposed Execution:

Phase 1 (Parallel - No deps):
┌──────────────┐  ┌──────────────┐  ┌──────────────────┐
│ http_client  │  │    retry     │  │   interceptors   │
│    .py       │  │    .py       │  │       .py        │
└──────┬───────┘  └──────┬───────┘  └────────┬─────────┘
       │                 │                   │
       └─────────────────┼───────────────────┘
                         ↓
Phase 2 (Sequential - Depends on all above):
              ┌─────────────────────┐
              │ test_http_client.py │
              └─────────────────────┘

L4/L5 Example: Microservice with Full Decomposition

Input Task:

memex-cli run --backend codex --stdin <<'EOF'
---TASK---
id: auth-service
backend: codex
model: gpt-5.2
workdir: ./services/auth
timeout: 9000
---CONTENT---
设计用户认证微服务:
- 数据模型 (models/)
- 业务逻辑 (services/)
- API 端点 (api/)
- 数据库迁移 (migrations/)
- 完整测试套件 (tests/)
---END---
EOF

Auto-Decomposed Execution:

Phase 1: Foundation (Parallel)
┌──────────┐  ┌──────────┐
│ models/  │  │ schemas/ │
│ user.py  │  │ auth.py  │
└────┬─────┘  └────┬─────┘
     │             │
     └──────┬──────┘
            ↓
Phase 2: Business Logic (Parallel, depends on Phase 1)
┌─────────────┐  ┌─────────────┐  ┌─────────────┐
│ services/   │  │ services/   │  │ services/   │
│ auth.py     │  │ token.py    │  │ password.py │
└──────┬──────┘  └──────┬──────┘  └──────┬──────┘
       │                │                │
       └────────────────┼────────────────┘
                        ↓
Phase 3: API Layer (Sequential, depends on Phase 2)
┌─────────────────────────────────┐
│ api/routes.py, api/middleware.py│
└────────────────┬────────────────┘
                 ↓
Phase 4: Database & Tests (Parallel, depends on Phase 3)
┌─────────────┐  ┌─────────────┐
│ migrations/ │  │   tests/    │
└─────────────┘  └─────────────┘

Model Selection Guide

Model Best For Complexity
gpt-5.1-codex-mini Simple scripts, quick fixes ⭐
gpt-5.1-codex-max Utilities, production modules ⭐⭐-⭐⭐⭐
gpt-5.2-codex Code review, refactoring, testing ⭐⭐⭐
gpt-5.2 Complex algorithms, architecture ⭐⭐⭐⭐-⭐⭐⭐⭐⭐

Auto selection rules:

  • Model is automatically selected based on task complexity level
  • Manual override available via model field when needed
  • System optimizes for cost-efficiency while maintaining quality

Complexity Levels Overview

Level 1: Simple Scripts (⭐)

Quick utilities, single-file scripts (20-100 lines). Use gpt-5.1-codex-mini.

Examples: Batch file rename, CSV processing, disk monitoring

Quick example:

memex-cli run --backend codex --stdin <<'EOF'
---TASK---
id: batch-rename
backend: codex
model: gpt-5.1-codex-mini
workdir: /path/to/scripts
---CONTENT---
Python脚本:批量重命名文件,添加日期前缀
---END---
EOF

➜ Detailed examples: examples/level1-simple-scripts.md


Level 2: Utility Functions (⭐⭐)

Reusable functions, data transformations (100-300 lines). Use gpt-5.1-codex-max.

Examples: Data validators, format converters, simple unit tests

Quick example:

memex-cli run --backend codex --stdin <<'EOF'
---TASK---
id: validators
backend: codex
model: gpt-5.1-codex-max
workdir: /path/to/utils
---CONTENT---
编写邮箱、手机号、身份证号验证函数
---END---
EOF

➜ Detailed examples: examples/level2-utilities.md


Level 3: Complete Modules (⭐⭐⭐)

Production-ready modules with error handling, logging, tests (300-800 lines). Use gpt-5.2-codex.

Examples: HTTP clients, database helpers, API wrappers

Special tasks at Level 3:

  • Code Review: Analyze code for security/performance issues
  • Refactoring: Apply design patterns, improve testability
  • Unit Testing: Comprehensive test coverage (>80%)

Quick example:

memex-cli run --backend codex --stdin <<'EOF'
---TASK---
id: http-client
backend: codex
model: gpt-5.2-codex
workdir: /path/to/lib
timeout: 5400
---CONTENT---
Python HTTP客户端:支持重试、超时、拦截器
---END---
EOF

Code review example:

memex-cli run --backend codex --stdin <<'EOF'
---TASK---
id: review
backend: codex
model: gpt-5.2-codex
files: ./src/auth.py
files-mode: ref
workdir: /path/to/project
---CONTENT---
审查代码:安全隐患、性能瓶颈、改进建议
---END---
EOF

➜ Detailed examples: examples/level3-modules.md


Level 4: Complex Algorithms (⭐⭐⭐⭐)

Advanced data structures, optimized algorithms (500-1500 lines). Use gpt-5.2 with extended timeout.

Examples: Skip lists, pathfinding (Dijkstra, A*), expression parsers

Quick example:

memex-cli run --backend codex --stdin <<'EOF'
---TASK---
id: skiplist
backend: codex
model: gpt-5.2
workdir: /path/to/algorithms
timeout: 7200
---CONTENT---
实现跳表:支持插入、删除、搜索,O(log n)复杂度
---END---
EOF

➜ Detailed examples: examples/level4-algorithms.md


Level 5: System Design & Architecture (⭐⭐⭐⭐⭐)

Multi-module projects, microservices, complete applications (2000+ lines). Use gpt-5.2 with 300-600s timeout.

Examples: Authentication microservices, event-driven systems, full-stack apps

Quick example:

memex-cli run --backend codex --stdin <<'EOF'
---TASK---
id: auth-service
backend: codex
model: gpt-5.2
workdir: /path/to/services/auth
timeout: 9000
---CONTENT---
设计用户认证微服务:JWT、OAuth2、RBAC权限模型
---END---
EOF

➜ Detailed examples: examples/level5-architecture.md


Basic Usage

Single Task

memex-cli run --backend codex --stdin <<'EOF'
---TASK---
id: task-id
backend: codex
workdir: /working/directory
model: gpt-5.2-codex
---CONTENT---
[Your task description]
---END---
EOF

Required Fields

Field Description Example
id Unique task identifier impl-auth, test-validators
backend Always codex for code generation codex
workdir Working directory path ./src, /home/user/project

Optional Fields

Field Default Description
model gpt-5.2-codex Model selection (see complexity guide)
timeout 1800 Max execution time (seconds, 30min base, +30min per level)
dependencies Comma-separated task IDs
files Source files to reference
files-mode ref ref (path only) – unified across all levels
retry 0 Retry count on failure

Quick Reference

Complexity Decision Tree

Start
  ├─ Single file, <100 lines? → Level 1 (codex-mini)
  ├─ Reusable functions, no external deps? → Level 2 (codex)
  ├─ Production module with tests?
  │   ├─ Standard CRUD/API? → Level 3 (gpt-5.1-codex-max)
  │   └─ Complex algorithm? → Level 4 (gpt-5.2)
  └─ Multi-module/microservice? → Level 5 (gpt-5.2)

Task Type Classification

Task Type Level Model Example Link
Batch rename script 1 codex-mini Level 1
Email validator 2 gpt-5.1-codex-max Level 2
HTTP client with retry 3 gpt-5.2-codex Level 3
Code review 3 gpt-5.2-codex Level 3
Refactoring 3-4 gpt-5.2-codex / gpt-5.2 Level 3
Unit testing 2-3 gpt-5.1-codex-max / gpt-5.2-codex Level 3
Skip list algorithm 4 gpt-5.2 Level 4
Auth microservice 5 gpt-5.2 Level 5

Additional Resources

Progressive Disclosure Documentation

Advanced Workflows

For multi-task workflows, parallel execution, and resume functionality, refer to memex-cli skill:


Tips

  1. Match model to task complexity

    • Start with lightweight models for simple tasks
    • Upgrade to powerful models only when needed
    • Save costs by not over-provisioning
  2. Use files for context

    • Code review: files: ./src/auth.py (files-mode defaults to ref)
    • Refactoring: Reference source files for analysis
    • Unit testing: Reference module to test
  3. Break down large tasks

    • Split Level 5 projects into parallel Level 3-4 subtasks
    • Use DAG workflows for dependencies
    • See memex-cli advanced usage
  4. Include context in prompts

    • Specify language, framework, coding standards
    • Mention target Python/Node.js version
    • Include expected output format
  5. Leverage examples

    • Browse examples/ directory for similar tasks
    • Copy and customize example commands
    • Follow established patterns

SKILL Reference