exa-answer
npx skills add https://github.com/benjaminjackson/exa-skills --skill exa-answer
Agent 安装分布
Skill 文档
Exa Answer
Token-efficient strategies for generating answers with structured output using exa-ai.
Use --help to see available commands and verify usage before running:
exa-ai <command> --help
Critical Requirements
MUST follow these rules when using exa-ai answer:
Shared Requirements
This skill inherits requirements from Common Requirements:
- Schema design patterns â All schema operations
- Output format selection â All output operations
MUST NOT Rules
- Avoid –text flag: Use
--textonly when you need full source text; otherwise rely on default behavior for better token efficiency
Cost Optimization
Pricing
- Per answer: $0.005
Cost strategy:
- Use
answerfor questions with moderate complexity that need AI synthesis - For simple lookups, use
searchinstead (same cost but gives you URLs for verification) - Consider whether you need a synthesized answer or just search results
Token Optimization
Apply these strategies:
- Use toon format:
--output-format toonfor 40% fewer tokens than JSON (use when reading output directly) - Use JSON + jq: Extract only needed fields with jq (use when piping/processing output)
- Use schemas: Structure answers with
--output-schemafor consistent, parseable output - Custom system prompts: Use
--system-promptto guide answer style and format
IMPORTANT: Choose one approach, don’t mix them:
- Approach 1: toon only – Compact YAML-like output for direct reading
- Approach 2: JSON + jq – Extract specific fields programmatically
- Approach 3: Schemas + jq – Get structured data, always use JSON output (default) and pipe to jq
Examples:
# â High token usage
exa-ai answer "What is Claude?"
# â
Approach 1: toon format for direct reading (40% reduction)
exa-ai answer "What is Claude?" --output-format toon
# â
Approach 2: JSON + jq for field extraction (80% reduction)
exa-ai answer "What is Claude?" \
--output-schema '{"type":"object","properties":{"product":{"type":"string"}}}' | jq -r '.answer.product'
# â Don't mix toon with jq (toon is YAML-like, not JSON)
exa-ai answer "What is Claude?" --output-format toon | jq -r '.answer'
Quick Start
Basic Answer
exa-ai answer "What is Anthropic's main product?" --output-format toon
Structured Output
exa-ai answer "What is Claude?" \
--output-schema '{"type":"object","properties":{"product_name":{"type":"string"},"company":{"type":"string"},"description":{"type":"string"}}}'
Array Output for Lists
exa-ai answer "What are the top 5 programming languages in 2024?" \
--output-schema '{"type":"object","properties":{"languages":{"type":"array","items":{"type":"string"}}}}' | jq -r '.answer.languages | map("- " + .) | join("\n")'
Custom System Prompt
exa-ai answer "Explain quantum computing" \
--system-prompt "Respond in simple terms suitable for a high school student"
Detailed Reference
For complete options, examples, and schema design tips, consult REFERENCE.md.
Shared Requirements
Schema Design
MUST: Use object wrapper for schemas
Applies to: answer, search, find-similar, get-contents
When using schema parameters (--output-schema or --summary-schema), always wrap properties in an object:
{"type":"object","properties":{"field_name":{"type":"string"}}}
DO NOT use bare properties without the object wrapper:
{"properties":{"field_name":{"type":"string"}}} // â Missing "type":"object"
Why: The Exa API requires a valid JSON Schema with an object type at the root level. Omitting this causes validation errors.
Examples:
# â
CORRECT - object wrapper included
exa-ai search "AI news" \
--summary-schema '{"type":"object","properties":{"headline":{"type":"string"}}}'
# â WRONG - missing object wrapper
exa-ai search "AI news" \
--summary-schema '{"properties":{"headline":{"type":"string"}}}'
Output Format Selection
MUST NOT: Mix toon format with jq
Applies to: answer, context, search, find-similar, get-contents
toon format produces YAML-like output, not JSON. DO NOT pipe toon output to jq for parsing:
# â WRONG - toon is not JSON
exa-ai search "query" --output-format toon | jq -r '.results'
# â
CORRECT - use JSON (default) with jq
exa-ai search "query" | jq -r '.results[].title'
# â
CORRECT - use toon for direct reading only
exa-ai search "query" --output-format toon
Why: jq expects valid JSON input. toon format is designed for human readability and produces YAML-like output that jq cannot parse.
SHOULD: Choose one output approach
Applies to: answer, context, search, find-similar, get-contents
Pick one strategy and stick with it throughout your workflow:
-
Approach 1: toon only – Compact YAML-like output for direct reading
- Use when: Reading output directly, no further processing needed
- Token savings: ~40% reduction vs JSON
- Example:
exa-ai search "query" --output-format toon
-
Approach 2: JSON + jq – Extract specific fields programmatically
- Use when: Need to extract specific fields or pipe to other commands
- Token savings: ~80-90% reduction (extracts only needed fields)
- Example:
exa-ai search "query" | jq -r '.results[].title'
-
Approach 3: Schemas + jq – Structured data extraction with validation
- Use when: Need consistent structured output across multiple queries
- Token savings: ~85% reduction + consistent schema
- Example:
exa-ai search "query" --summary-schema '{...}' | jq -r '.results[].summary | fromjson'
Why: Mixing approaches increases complexity and token usage. Choosing one approach optimizes for your use case.
Shell Command Best Practices
MUST: Run commands directly, parse separately
Applies to: monitor, search (websets), research, and all skills using complex commands
When using the Bash tool with complex shell syntax, run commands directly and parse output in separate steps:
# â WRONG - nested command substitution
webset_id=$(exa-ai webset-create --search '{"query":"..."}' | jq -r '.webset_id')
# â
CORRECT - run directly, then parse
exa-ai webset-create --search '{"query":"..."}'
# Then in a follow-up command:
webset_id=$(cat output.json | jq -r '.webset_id')
Why: Complex nested $(...) command substitutions can fail unpredictably in shell environments. Running commands directly and parsing separately improves reliability and makes debugging easier.
MUST NOT: Use nested command substitutions
Applies to: All skills when using complex multi-step operations
Avoid nesting multiple levels of command substitution:
# â WRONG - deeply nested
result=$(exa-ai search "$(cat query.txt | tr '\n' ' ')" --num-results $(cat config.json | jq -r '.count'))
# â
CORRECT - sequential steps
query=$(cat query.txt | tr '\n' ' ')
count=$(cat config.json | jq -r '.count')
exa-ai search "$query" --num-results $count
Why: Nested command substitutions are fragile and hard to debug when they fail. Sequential steps make each operation explicit and easier to troubleshoot.
SHOULD: Break complex commands into sequential steps
Applies to: All skills when working with multi-step workflows
For readability and reliability, break complex operations into clear sequential steps:
# â Less maintainable - everything in one line
exa-ai webset-create --search '{"query":"startups","count":1}' | jq -r '.webset_id' | xargs -I {} exa-ai webset-search-create {} --query "AI" --behavior override
# â
More maintainable - clear steps
exa-ai webset-create --search '{"query":"startups","count":1}'
webset_id=$(jq -r '.webset_id' < output.json)
exa-ai webset-search-create $webset_id --query "AI" --behavior override
Why: Sequential steps are easier to understand, debug, and modify. Each step can be verified independently.