madai-investigator
1
总安装量
1
周安装量
#50553
全站排名
安装命令
npx skills add https://github.com/benjaming/ai-skills --skill madai-investigator
Agent 安装分布
cursor
1
codex
1
claude-code
1
gemini-cli
1
Skill 文档
MadAI Support Ticket Investigator
Investigate MadKudu support tickets systematically using available MCP tools.
Investigation Workflow
Follow these steps in order for thorough investigation:
Step 1: Fetch Ticket Details
Extract ticket information based on source:
Zendesk tickets:
mcp__MadAI_Prod__get_zendesk_ticket(ticket_url)
Jira tickets:
mcp__MadAI_Prod__get_jira_ticket(issue_key) # e.g., "SUPPORT-123"
Identify from ticket:
- Tenant ID (look for tenant mentions, domain, or company name)
- Issue description and symptoms
- Timeline (when did the issue start?)
- Any error messages or screenshots
Step 2: Identify Tenant
If tenant ID not explicit in ticket, search by domain:
mcp__MadAI_Prod__get_argo_data(endpoint="tenant", params={"domain": "example.com"})
Or search by user email:
mcp__MadAI_Prod__get_argo_data(endpoint="users/search", params={"email": "user@example.com"})
Get full tenant details:
mcp__MadAI_Prod__get_argo_data(endpoint="tenant/{tenant_id}")
Step 3: Health Checks
Run health checks in parallel when possible:
Tenant active status:
mcp__MadAI_Prod__check_tenant_active(tenant_id)
Connector connectivity:
mcp__MadAI_Prod__check_connector_connectivity(tenant_id)
Fill rate (scoring health):
mcp__MadAI_Prod__get_fill_rate_data(tenant_id, look_back_hours=24)
Process status:
mcp__MadAI_Prod__get_pull_processes_status(tenant_id, look_back_hours=24)
mcp__MadAI_Prod__get_push_processes_status(tenant_id, look_back_hours=24)
mcp__MadAI_Prod__get_data_workers_status(tenant_id, look_back_hours=24)
Step 4: Dig Deeper (as needed)
Check connector details:
mcp__MadAI_Prod__get_argo_data(endpoint="tenant/{tenant_id}/connectors/{connector_name}")
# connector_name: salesforce, hubspot, marketo, etc.
Query Datadog logs for errors:
mcp__MadAI_Prod__query_datadog_logs(query="@tenant:{tenant_id} status:error", look_back_hours=72)
Query tenant databases:
# Redshift (analytics data)
mcp__MadAI_Prod__execute_redshift_query(tenant_id, query="SELECT ...")
# Postgres - emback (main app data)
mcp__MadAI_Prod__execute_postgres_query(tenant_id, query="SELECT ...", database="emback")
# Postgres - honk (playbooks data)
mcp__MadAI_Prod__execute_postgres_query(tenant_id, query="SELECT ...", database="honk")
Check tenant config in GitHub:
mcp__MadAI_Prod__get_github_tenant_config_file_content(file_path="path/to/config")
Step 5: Query Knowledge Bases
Search for similar issues or solutions:
Product questions:
mcp__MadAI_Prod__answer_product_question(question="How does X feature work?")
Engineering how-to:
mcp__MadAI_Prod__answer_engineering_question(question="How to debug Y issue?")
Step 6: Produce Investigation Report
Structure findings as:
## Investigation Summary
**Ticket:** [ticket ID/URL]
**Tenant:** [tenant_id] - [company name]
**Issue:** [brief description]
## Findings
### Health Status
- Tenant Active: â
/â
- Connectors: [status]
- Fill Rate: [percentage]
- Processes: [status]
### Root Cause Analysis
[What's causing the issue based on evidence]
### Evidence
- [Log entries, error messages, data points]
## Recommendations
1. [Action item]
2. [Action item]
## Next Steps
[What should happen next - escalate, fix, follow up]
Common Investigation Patterns
Scoring Issues
- Check fill rate data
- Verify connector connectivity
- Query pull/push process status
- Check Datadog for scoring errors
Connector Problems
- Check connector connectivity
- Get specific connector details from Argo
- Query Datadog for connector-specific errors
- Verify credentials/config in tenant settings
Data Sync Issues
- Check data workers status
- Query pull processes
- Check Redshift for data freshness
- Look for sync errors in Datadog
Missing Scores/Signals
- Verify tenant is active
- Check if model is deployed (tenant config)
- Query Postgres for signal configuration
- Check fill rate trends over time