deep-learning

📁 aznatkoiny/skills 📅 12 days ago
1
总安装量
1
周安装量
#55258
全站排名
安装命令
npx skills add https://github.com/aznatkoiny/skills --skill deep-learning

Agent 安装分布

codex 1
github-copilot 1
claude-code 1
antigravity 1
gemini-cli 1

Skill 文档

Deep Learning with Keras 3

Patterns and best practices based on Deep Learning with Python, 2nd Edition by François Chollet, updated for Keras 3 (Multi-Backend).

Core Workflow

  1. Prepare Data: Normalize, split train/val/test, create tf.data.Dataset
  2. Build Model: Sequential, Functional, or Subclassing API
  3. Compile: model.compile(optimizer, loss, metrics)
  4. Train: model.fit(data, epochs, validation_data, callbacks)
  5. Evaluate: model.evaluate(test_data)

Model Building APIs

Sequential – Simple stack of layers:

model = keras.Sequential([
    layers.Dense(64, activation="relu"),
    layers.Dense(10, activation="softmax")
])

Functional – Multi-input/output, shared layers, non-linear topologies:

inputs = keras.Input(shape=(64,))
x = layers.Dense(64, activation="relu")(inputs)
outputs = layers.Dense(10, activation="softmax")(x)
model = keras.Model(inputs=inputs, outputs=outputs)

Subclassing – Full flexibility with call() method:

class MyModel(keras.Model):
    def __init__(self):
        super().__init__()
        self.dense1 = layers.Dense(64, activation="relu")
        self.dense2 = layers.Dense(10, activation="softmax")

    def call(self, inputs):
        x = self.dense1(inputs)
        return self.dense2(x)

Quick Reference: Loss & Optimizer Selection

Task Loss Final Activation
Binary classification binary_crossentropy sigmoid
Multiclass (one-hot) categorical_crossentropy softmax
Multiclass (integers) sparse_categorical_crossentropy softmax
Regression mse or mae None

Optimizers: rmsprop (default), adam (popular), sgd (with momentum for fine-tuning)

Domain-Specific Guides

Topic Reference When to Use
Keras 3 Migration keras3_changes.md START HERE: Multi-backend setup, keras.ops, import keras
Fundamentals basics.md Overfitting, regularization, data prep, K-fold validation
Keras Deep Dive keras_working.md Custom metrics, callbacks, training loops, tf.function
Computer Vision computer_vision.md Convnets, data augmentation, transfer learning
Advanced CV advanced_cv.md Segmentation, ResNets, Xception, Grad-CAM
Time Series timeseries.md RNNs (LSTM/GRU), 1D convnets, forecasting
NLP & Transformers nlp_transformers.md Text processing, embeddings, Transformer encoder/decoder
Generative DL generative_dl.md Text generation, VAEs, GANs, style transfer
Best Practices best_practices.md KerasTuner, mixed precision, multi-GPU, TPU

Essential Callbacks

callbacks = [
    keras.callbacks.EarlyStopping(monitor="val_loss", patience=3),
    keras.callbacks.ModelCheckpoint("best.keras", save_best_only=True),
    keras.callbacks.TensorBoard(log_dir="./logs")
]
model.fit(..., callbacks=callbacks)

Utility Scripts

Script Description
quick_train.py Reusable training template with standard callbacks and history plotting
visualize_filters.py Visualize convnet filter patterns via gradient ascent