tracing-upstream-lineage

📁 astronomer/agents 📅 Jan 23, 2026
195
总安装量
195
周安装量
#1377
全站排名
安装命令
npx skills add https://github.com/astronomer/agents --skill tracing-upstream-lineage

Agent 安装分布

claude-code 131
opencode 119
codex 114
cursor 104
github-copilot 103
gemini-cli 92

Skill 文档

Upstream Lineage: Sources

Trace the origins of data – answer “Where does this data come from?”

Lineage Investigation

Step 1: Identify the Target Type

Determine what we’re tracing:

  • Table: Trace what populates this table
  • Column: Trace where this specific column comes from
  • DAG: Trace what data sources this DAG reads from

Step 2: Find the Producing DAG

Tables are typically populated by Airflow DAGs. Find the connection:

  1. Search DAGs by name: Use af dags list and look for DAG names matching the table name

    • load_customers -> customers table
    • etl_daily_orders -> orders table
  2. Explore DAG source code: Use af dags source <dag_id> to read the DAG definition

    • Look for INSERT, MERGE, CREATE TABLE statements
    • Find the target table in the code
  3. Check DAG tasks: Use af tasks list <dag_id> to see what operations the DAG performs

Step 3: Trace Data Sources

From the DAG code, identify source tables and systems:

SQL Sources (look for FROM clauses):

# In DAG code:
SELECT * FROM source_schema.source_table  # <- This is an upstream source

External Sources (look for connection references):

  • S3Operator -> S3 bucket source
  • PostgresOperator -> Postgres database source
  • SalesforceOperator -> Salesforce API source
  • HttpOperator -> REST API source

File Sources:

  • CSV/Parquet files in object storage
  • SFTP drops
  • Local file paths

Step 4: Build the Lineage Chain

Recursively trace each source:

TARGET: analytics.orders_daily
    ^
    +-- DAG: etl_daily_orders
            ^
            +-- SOURCE: raw.orders (table)
            |       ^
            |       +-- DAG: ingest_orders
            |               ^
            |               +-- SOURCE: Salesforce API (external)
            |
            +-- SOURCE: dim.customers (table)
                    ^
                    +-- DAG: load_customers
                            ^
                            +-- SOURCE: PostgreSQL (external DB)

Step 5: Check Source Health

For each upstream source:

  • Tables: Check freshness with the checking-freshness skill
  • DAGs: Check recent run status with af dags stats
  • External systems: Note connection info from DAG code

Lineage for Columns

When tracing a specific column:

  1. Find the column in the target table schema
  2. Search DAG source code for references to that column name
  3. Trace through transformations:
    • Direct mappings: source.col AS target_col
    • Transformations: COALESCE(a.col, b.col) AS target_col
    • Aggregations: SUM(detail.amount) AS total_amount

Output: Lineage Report

Summary

One-line answer: “This table is populated by DAG X from sources Y and Z”

Lineage Diagram

[Salesforce] --> [raw.opportunities] --> [stg.opportunities] --> [fct.sales]
                        |                        |
                   DAG: ingest_sfdc         DAG: transform_sales

Source Details

Source Type Connection Freshness Owner
raw.orders Table Internal 2h ago data-team
Salesforce API salesforce_conn Real-time sales-ops

Transformation Chain

Describe how data flows and transforms:

  1. Raw data lands in raw.orders via Salesforce API sync
  2. DAG transform_orders cleans and dedupes into stg.orders
  3. DAG build_order_facts joins with dimensions into fct.orders

Data Quality Implications

  • Single points of failure?
  • Stale upstream sources?
  • Complex transformation chains that could break?

Related Skills

  • Check source freshness: checking-freshness skill
  • Debug source DAG: debugging-dags skill
  • Trace downstream impacts: tracing-downstream-lineage skill
  • Add manual lineage annotations: annotating-task-lineage skill
  • Build custom lineage extractors: creating-openlineage-extractors skill