tracing-downstream-lineage

📁 astronomer/agents 📅 Jan 23, 2026
191
总安装量
191
周安装量
#1398
全站排名
安装命令
npx skills add https://github.com/astronomer/agents --skill tracing-downstream-lineage

Agent 安装分布

claude-code 129
opencode 116
codex 111
cursor 102
github-copilot 100
gemini-cli 90

Skill 文档

Downstream Lineage: Impacts

Answer the critical question: “What breaks if I change this?”

Use this BEFORE making changes to understand the blast radius.

Impact Analysis

Step 1: Identify Direct Consumers

Find everything that reads from this target:

For Tables:

  1. Search DAG source code: Look for DAGs that SELECT from this table

    • Use af dags list to get all DAGs
    • Use af dags source <dag_id> to search for table references
    • Look for: FROM target_table, JOIN target_table
  2. Check for dependent views:

    -- Snowflake
    SELECT * FROM information_schema.view_table_usage
    WHERE table_name = '<target_table>'
    
    -- Or check SHOW VIEWS and search definitions
    
  3. Look for BI tool connections:

    • Dashboards often query tables directly
    • Check for common BI patterns in table naming (rpt_, dashboard_)

For DAGs:

  1. Check what the DAG produces: Use af dags source <dag_id> to find output tables
  2. Then trace those tables’ consumers (recursive)

Step 2: Build Dependency Tree

Map the full downstream impact:

SOURCE: fct.orders
    |
    +-- TABLE: agg.daily_sales --> Dashboard: Executive KPIs
    |       |
    |       +-- TABLE: rpt.monthly_summary --> Email: Monthly Report
    |
    +-- TABLE: ml.order_features --> Model: Demand Forecasting
    |
    +-- DIRECT: Looker Dashboard "Sales Overview"

Step 3: Categorize by Criticality

Critical (breaks production):

  • Production dashboards
  • Customer-facing applications
  • Automated reports to executives
  • ML models in production
  • Regulatory/compliance reports

High (causes significant issues):

  • Internal operational dashboards
  • Analyst workflows
  • Data science experiments
  • Downstream ETL jobs

Medium (inconvenient):

  • Ad-hoc analysis tables
  • Development/staging copies
  • Historical archives

Low (minimal impact):

  • Deprecated tables
  • Unused datasets
  • Test data

Step 4: Assess Change Risk

For the proposed change, evaluate:

Schema Changes (adding/removing/renaming columns):

  • Which downstream queries will break?
  • Are there SELECT * patterns that will pick up new columns?
  • Which transformations reference the changing columns?

Data Changes (values, volumes, timing):

  • Will downstream aggregations still be valid?
  • Are there NULL handling assumptions that will break?
  • Will timing changes affect SLAs?

Deletion/Deprecation:

  • Full dependency tree must be migrated first
  • Communication needed for all stakeholders

Step 5: Find Stakeholders

Identify who owns downstream assets:

  1. DAG owners: Check owners field in DAG definitions
  2. Dashboard owners: Usually in BI tool metadata
  3. Team ownership: Look for team naming patterns or documentation

Output: Impact Report

Summary

“Changing fct.orders will impact X tables, Y DAGs, and Z dashboards”

Impact Diagram

                    +--> [agg.daily_sales] --> [Executive Dashboard]
                    |
[fct.orders] -------+--> [rpt.order_details] --> [Ops Team Email]
                    |
                    +--> [ml.features] --> [Demand Model]

Detailed Impacts

Downstream Type Criticality Owner Notes
agg.daily_sales Table Critical data-eng Updated hourly
Executive Dashboard Dashboard Critical analytics CEO views daily
ml.order_features Table High ml-team Retraining weekly

Risk Assessment

Change Type Risk Level Mitigation
Add column Low No action needed
Rename column High Update 3 DAGs, 2 dashboards
Delete column Critical Full migration plan required
Change data type Medium Test downstream aggregations

Recommended Actions

Before making changes:

  1. Notify owners: @data-eng, @analytics, @ml-team
  2. Update downstream DAG: transform_daily_sales
  3. Test dashboard: Executive KPIs
  4. Schedule change during low-impact window

Related Skills

  • Trace where data comes from: tracing-upstream-lineage skill
  • Check downstream freshness: checking-freshness skill
  • Debug any broken DAGs: debugging-dags skill
  • Add manual lineage annotations: annotating-task-lineage skill
  • Build custom lineage extractors: creating-openlineage-extractors skill