gpt-researcher

📁 assafelovic/gpt-researcher 📅 13 days ago
68
总安装量
70
周安装量
#3230
全站排名
安装命令
npx skills add https://github.com/assafelovic/gpt-researcher --skill gpt-researcher

Agent 安装分布

codex 48
opencode 46
claude-code 40
gemini-cli 39
amp 33
kimi-cli 31

Skill 文档

GPT Researcher Development Skill

GPT Researcher is an LLM-based autonomous agent using a planner-executor-publisher pattern with parallelized agent work for speed and reliability.

Quick Start

Basic Python Usage

from gpt_researcher import GPTResearcher
import asyncio

async def main():
    researcher = GPTResearcher(
        query="What are the latest AI developments?",
        report_type="research_report",  # or detailed_report, deep, outline_report
        report_source="web",            # or local, hybrid
    )
    await researcher.conduct_research()
    report = await researcher.write_report()
    print(report)

asyncio.run(main())

Run Servers

# Backend
python -m uvicorn backend.server.server:app --reload --port 8000

# Frontend
cd frontend/nextjs && npm install && npm run dev

Key File Locations

Need Primary File Key Classes
Main orchestrator gpt_researcher/agent.py GPTResearcher
Research logic gpt_researcher/skills/researcher.py ResearchConductor
Report writing gpt_researcher/skills/writer.py ReportGenerator
All prompts gpt_researcher/prompts.py PromptFamily
Configuration gpt_researcher/config/config.py Config
Config defaults gpt_researcher/config/variables/default.py DEFAULT_CONFIG
API server backend/server/app.py FastAPI app
Search engines gpt_researcher/retrievers/ Various retrievers

Architecture Overview

User Query → GPTResearcher.__init__()
                │
                ▼
         choose_agent() → (agent_type, role_prompt)
                │
                ▼
         ResearchConductor.conduct_research()
           ├── plan_research() → sub_queries
           ├── For each sub_query:
           │     └── _process_sub_query() → context
           └── Aggregate contexts
                │
                ▼
         [Optional] ImageGenerator.plan_and_generate_images()
                │
                ▼
         ReportGenerator.write_report() → Markdown report

For detailed architecture diagrams: See references/architecture.md


Core Patterns

Adding a New Feature (8-Step Pattern)

  1. Config → Add to gpt_researcher/config/variables/default.py
  2. Provider → Create in gpt_researcher/llm_provider/my_feature/
  3. Skill → Create in gpt_researcher/skills/my_feature.py
  4. Agent → Integrate in gpt_researcher/agent.py
  5. Prompts → Update gpt_researcher/prompts.py
  6. WebSocket → Events via stream_output()
  7. Frontend → Handle events in useWebSocket.ts
  8. Docs → Create docs/docs/gpt-researcher/gptr/my_feature.md

For complete feature addition guide with Image Generation case study: See references/adding-features.md

Adding a New Retriever

# 1. Create: gpt_researcher/retrievers/my_retriever/my_retriever.py
class MyRetriever:
    def __init__(self, query: str, headers: dict = None):
        self.query = query
    
    async def search(self, max_results: int = 10) -> list[dict]:
        # Return: [{"title": str, "href": str, "body": str}]
        pass

# 2. Register in gpt_researcher/actions/retriever.py
case "my_retriever":
    from gpt_researcher.retrievers.my_retriever import MyRetriever
    return MyRetriever

# 3. Export in gpt_researcher/retrievers/__init__.py

For complete retriever documentation: See references/retrievers.md


Configuration

Config keys are lowercased when accessed:

# In default.py: "SMART_LLM": "gpt-4o"
# Access as: self.cfg.smart_llm  # lowercase!

Priority: Environment Variables → JSON Config File → Default Values

For complete configuration reference: See references/config-reference.md


Common Integration Points

WebSocket Streaming

class WebSocketHandler:
    async def send_json(self, data):
        print(f"[{data['type']}] {data.get('output', '')}")

researcher = GPTResearcher(query="...", websocket=WebSocketHandler())

MCP Data Sources

researcher = GPTResearcher(
    query="Open source AI projects",
    mcp_configs=[{
        "name": "github",
        "command": "npx",
        "args": ["-y", "@modelcontextprotocol/server-github"],
        "env": {"GITHUB_TOKEN": os.getenv("GITHUB_TOKEN")}
    }],
    mcp_strategy="deep",  # or "fast", "disabled"
)

For MCP integration details: See references/mcp.md

Deep Research Mode

researcher = GPTResearcher(
    query="Comprehensive analysis of quantum computing",
    report_type="deep",  # Triggers recursive tree-like exploration
)

For deep research configuration: See references/deep-research.md


Error Handling

Always use graceful degradation in skills:

async def execute(self, ...):
    if not self.is_enabled():
        return []  # Don't crash
    
    try:
        result = await self.provider.execute(...)
        return result
    except Exception as e:
        await stream_output("logs", "error", f"⚠️ {e}", self.websocket)
        return []  # Graceful degradation

Critical Gotchas

❌ Mistake ✅ Correct
config.MY_VAR config.my_var (lowercased)
Editing pip-installed package pip install -e .
Forgetting async/await All research methods are async
websocket.send_json() on None Check if websocket: first
Not registering retriever Add to retriever.py match statement

Reference Documentation

Topic File
System architecture & diagrams references/architecture.md
Core components & signatures references/components.md
Research flow & data flow references/flows.md
Prompt system references/prompts.md
Retriever system references/retrievers.md
MCP integration references/mcp.md
Deep research mode references/deep-research.md
Multi-agent system references/multi-agents.md
Adding features guide references/adding-features.md
Advanced patterns references/advanced-patterns.md
REST & WebSocket API references/api-reference.md
Configuration variables references/config-reference.md