x-research
npx skills add https://github.com/arcocodes/skill-x-research --skill x-research
Agent 安装分布
Skill 文档
X/Twitter Research
Research high-performing tweets from tracked accounts, identify outliers, and optionally analyze video content for hooks and structure.
Prerequisites
APIFY_TOKENenvironment variable or in.envGEMINI_API_KEYenvironment variable or in.env(for video analysis)apify-clientandgoogle-genaiPython packages- Accounts configured in
.claude/context/x-accounts.md
Verify setup:
python3 -c "
import os
try:
from dotenv import load_dotenv
load_dotenv()
except ImportError:
pass
from apify_client import ApifyClient
assert os.environ.get('APIFY_TOKEN'), 'APIFY_TOKEN not set'
" && echo "Prerequisites OK"
Workflow
1. Create Run Folder
RUN_FOLDER="x-research/$(date +%Y-%m-%d_%H%M%S)" && mkdir -p "$RUN_FOLDER" && echo "$RUN_FOLDER"
2. Fetch Tweets
python3 .claude/skills/x-research/scripts/fetch_tweets.py \
--days 30 \
--max-items 100 \
--output {RUN_FOLDER}/raw.json
Parameters:
--days: Days back to search (default: 30)--max-items: Max tweets per account (default: 100)--handles: Override accounts file with specific handles
API Limits: Minimum 50 tweets per query required. Wait a couple minutes between runs.
â ï¸ æ³¨æ:
- 使ç¨
searchTerms+from:handleè¯æ³ï¼ä¸è¦ç¨twitterHandlesï¼åè ä¸ç¨³å®ï¼ - å·²èªå¨æé¤è½¬æ¨ (
-filter:retweets)
3. Identify Outliers
python3 .claude/skills/x-research/scripts/analyze_posts.py \
--input {RUN_FOLDER}/raw.json \
--output {RUN_FOLDER}/outliers.json \
--threshold 2.0
Output JSON contains:
total_posts: Number of tweets analyzedoutlier_count: Number of outliers foundtopics: Top hashtags, mentions, and keywordscontent_patterns: Analysis of what formats perform wellaccounts: List of accounts analyzedoutliers: Array of outlier tweets with engagement metrics
4. Analyze Videos with AI (Optional)
If outliers contain video content:
python3 .claude/skills/video-content-analyzer/scripts/analyze_videos.py \
--input {RUN_FOLDER}/outliers.json \
--output {RUN_FOLDER}/video-analysis.json \
--platform x \
--max-videos 5
Note: X/Twitter is primarily text-based. Video analysis is optional and only useful when outliers contain video posts.
5. Generate Report
Read {RUN_FOLDER}/outliers.json (and optionally {RUN_FOLDER}/video-analysis.json), then generate {RUN_FOLDER}/report.md.
Report Structure:
# X/Twitter Research Report
Generated: {date}
## Summary
- **Total tweets analyzed**: {total_posts}
- **Outlier tweets identified**: {outlier_count}
- **Outlier rate**: {percentage}%
## Top Performing Tweets (Outliers)
### 1. @{username} ({name})
> {tweet_text}
- **URL**: {url}
- **Date**: {created_at}
- **Engagement**: {likes} likes | {retweets} RTs | {replies} replies | {bookmarks} bookmarks
- **Engagement Score**: {score}
- **Engagement Rate**: {rate}%
- **Followers**: {followers}
[Repeat for top 15 outliers]
## Top Performing Hooks (if video analysis available)
### Hook 1: {technique} - @{username}
- **Opening**: "{opening_line}"
- **Why it works**: {attention_grab}
- **Replicable Formula**: {replicable_formula}
- [Watch Video]({url})
## Trending Topics
### Top Hashtags
[From outliers.json topics.hashtags]
### Top Keywords
[From outliers.json topics.keywords]
### Top Mentions
[From outliers.json topics.mentions]
## Content Patterns in Outliers
| Pattern | Count | Percentage |
|---------|-------|------------|
| Contains media | {count} | {pct}% |
| Contains external link | {count} | {pct}% |
| Thread format | {count} | {pct}% |
| Quote tweet | {count} | {pct}% |
| Asks a question | {count} | {pct}% |
| List/numbered format | {count} | {pct}% |
| Short (<100 chars) | {count} | {pct}% |
| Medium (100-200 chars) | {count} | {pct}% |
| Long (>200 chars) | {count} | {pct}% |
## Actionable Takeaways
[Synthesize patterns into 4-6 specific recommendations]
## Accounts Analyzed
[List accounts]
Focus on actionable insights. Content patterns and trending topics are key for X/Twitter research.
Quick Reference
Full pipeline:
RUN_FOLDER="x-research/$(date +%Y-%m-%d_%H%M%S)" && mkdir -p "$RUN_FOLDER" && \
python3 .claude/skills/x-research/scripts/fetch_tweets.py -o "$RUN_FOLDER/raw.json" && \
python3 .claude/skills/x-research/scripts/analyze_posts.py -i "$RUN_FOLDER/raw.json" -o "$RUN_FOLDER/outliers.json"
With video analysis (optional):
python3 .claude/skills/video-content-analyzer/scripts/analyze_videos.py -i "$RUN_FOLDER/outliers.json" -o "$RUN_FOLDER/video-analysis.json" -p x
Then read JSON files and generate the report.
Engagement Metrics
Engagement Score (weighted):
- Bookmarks: 4x (highest signal – saved for reference)
- Replies: 3x (active conversation)
- Retweets: 2x (amplification)
- Quotes: 2x (engagement with commentary)
- Likes: 1x (passive approval)
Outlier Detection: Tweets with engagement rate > mean + (threshold x std_dev)
Engagement Rate: (score / followers) x 100
Output Location
All output goes to timestamped run folders:
x-research/
âââ {YYYY-MM-DD_HHMMSS}/
âââ raw.json # Raw tweet data from Apify
âââ outliers.json # Outliers with metadata and topics
âââ video-analysis.json # AI video analysis (optional)
âââ report.md # Final report