social-media-analyzer
161
总安装量
162
周安装量
#1614
全站排名
安装命令
npx skills add https://github.com/alirezarezvani/claude-skills --skill social-media-analyzer
Agent 安装分布
claude-code
130
opencode
113
gemini-cli
105
antigravity
93
codex
93
Skill 文档
Social Media Analyzer
Campaign performance analysis with engagement metrics, ROI calculations, and platform benchmarks.
Table of Contents
Analysis Workflow
Analyze social media campaign performance:
- Validate input data completeness (reach > 0, dates valid)
- Calculate engagement metrics per post
- Aggregate campaign-level metrics
- Calculate ROI if ad spend provided
- Compare against platform benchmarks
- Identify top and bottom performers
- Generate recommendations
- Validation: Engagement rate < 100%, ROI matches spend data
Input Requirements
| Field | Required | Description |
|---|---|---|
| platform | Yes | instagram, facebook, twitter, linkedin, tiktok |
| posts[] | Yes | Array of post data |
| posts[].likes | Yes | Like/reaction count |
| posts[].comments | Yes | Comment count |
| posts[].reach | Yes | Unique users reached |
| posts[].impressions | No | Total views |
| posts[].shares | No | Share/retweet count |
| posts[].saves | No | Save/bookmark count |
| posts[].clicks | No | Link clicks |
| total_spend | No | Ad spend (for ROI) |
Data Validation Checks
Before analysis, verify:
- Reach > 0 for all posts (avoid division by zero)
- Engagement counts are non-negative
- Date range is valid (start < end)
- Platform is recognized
- Spend > 0 if ROI requested
Engagement Metrics
Engagement Rate Calculation
Engagement Rate = (Likes + Comments + Shares + Saves) / Reach à 100
Metric Definitions
| Metric | Formula | Interpretation |
|---|---|---|
| Engagement Rate | Engagements / Reach à 100 | Audience interaction level |
| CTR | Clicks / Impressions à 100 | Content click appeal |
| Reach Rate | Reach / Followers à 100 | Content distribution |
| Virality Rate | Shares / Impressions à 100 | Share-worthiness |
| Save Rate | Saves / Reach à 100 | Content value |
Performance Categories
| Rating | Engagement Rate | Action |
|---|---|---|
| Excellent | > 6% | Scale and replicate |
| Good | 3-6% | Optimize and expand |
| Average | 1-3% | Test improvements |
| Poor | < 1% | Analyze and pivot |
ROI Calculation
Calculate return on ad spend:
- Sum total engagements across posts
- Calculate cost per engagement (CPE)
- Calculate cost per click (CPC) if clicks available
- Estimate engagement value using benchmark rates
- Calculate ROI percentage
- Validation: ROI = (Value – Spend) / Spend à 100
ROI Formulas
| Metric | Formula |
|---|---|
| Cost Per Engagement (CPE) | Total Spend / Total Engagements |
| Cost Per Click (CPC) | Total Spend / Total Clicks |
| Cost Per Thousand (CPM) | (Spend / Impressions) Ã 1000 |
| Return on Ad Spend (ROAS) | Revenue / Ad Spend |
Engagement Value Estimates
| Action | Value | Rationale |
|---|---|---|
| Like | $0.50 | Brand awareness |
| Comment | $2.00 | Active engagement |
| Share | $5.00 | Amplification |
| Save | $3.00 | Intent signal |
| Click | $1.50 | Traffic value |
ROI Interpretation
| ROI % | Rating | Recommendation |
|---|---|---|
| > 500% | Excellent | Scale budget significantly |
| 200-500% | Good | Increase budget moderately |
| 100-200% | Acceptable | Optimize before scaling |
| 0-100% | Break-even | Review targeting and creative |
| < 0% | Negative | Pause and restructure |
Platform Benchmarks
Engagement Rate by Platform
| Platform | Average | Good | Excellent |
|---|---|---|---|
| 1.22% | 3-6% | >6% | |
| 0.07% | 0.5-1% | >1% | |
| Twitter/X | 0.05% | 0.1-0.5% | >0.5% |
| 2.0% | 3-5% | >5% | |
| TikTok | 5.96% | 8-15% | >15% |
CTR by Platform
| Platform | Average | Good | Excellent |
|---|---|---|---|
| 0.22% | 0.5-1% | >1% | |
| 0.90% | 1.5-2.5% | >2.5% | |
| 0.44% | 1-2% | >2% | |
| TikTok | 0.30% | 0.5-1% | >1% |
CPC by Platform
| Platform | Average | Good |
|---|---|---|
| $0.97 | <$0.50 | |
| $1.20 | <$0.70 | |
| $5.26 | <$3.00 | |
| TikTok | $1.00 | <$0.50 |
See references/platform-benchmarks.md for complete benchmark data.
Tools
Calculate Metrics
python scripts/calculate_metrics.py assets/sample_input.json
Calculates engagement rate, CTR, reach rate for each post and campaign totals.
Analyze Performance
python scripts/analyze_performance.py assets/sample_input.json
Generates full performance analysis with ROI, benchmarks, and recommendations.
Output includes:
- Campaign-level metrics
- Post-by-post breakdown
- Benchmark comparisons
- Top performers ranked
- Actionable recommendations
Examples
Sample Input
See assets/sample_input.json:
{
"platform": "instagram",
"total_spend": 500,
"posts": [
{
"post_id": "post_001",
"content_type": "image",
"likes": 342,
"comments": 28,
"shares": 15,
"saves": 45,
"reach": 5200,
"impressions": 8500,
"clicks": 120
}
]
}
Sample Output
See assets/expected_output.json:
{
"campaign_metrics": {
"total_engagements": 1521,
"avg_engagement_rate": 8.36,
"ctr": 1.55
},
"roi_metrics": {
"total_spend": 500.0,
"cost_per_engagement": 0.33,
"roi_percentage": 660.5
},
"insights": {
"overall_health": "excellent",
"benchmark_comparison": {
"engagement_status": "excellent",
"engagement_benchmark": "1.22%",
"engagement_actual": "8.36%"
}
}
}
Interpretation
The sample campaign shows:
- Engagement rate 8.36% vs 1.22% benchmark = Excellent (6.8x above average)
- CTR 1.55% vs 0.22% benchmark = Excellent (7x above average)
- ROI 660% = Outstanding return on $500 spend
- Recommendation: Scale budget, replicate successful elements
Reference Documentation
Platform Benchmarks
references/platform-benchmarks.md contains:
- Engagement rate benchmarks by platform and industry
- CTR benchmarks for organic and paid content
- Cost benchmarks (CPC, CPM, CPE)
- Content type performance by platform
- Optimal posting times and frequency
- ROI calculation formulas