senior-prompt-engineer
npx skills add https://github.com/alirezarezvani/claude-skills --skill senior-prompt-engineer
Agent 安装分布
Skill 文档
Senior Prompt Engineer
Prompt engineering patterns, LLM evaluation frameworks, and agentic system design.
Table of Contents
- Quick Start
- Tools Overview
- Prompt Engineering Workflows
- Reference Documentation
- Common Patterns Quick Reference
Quick Start
# Analyze and optimize a prompt file
python scripts/prompt_optimizer.py prompts/my_prompt.txt --analyze
# Evaluate RAG retrieval quality
python scripts/rag_evaluator.py --contexts contexts.json --questions questions.json
# Visualize agent workflow from definition
python scripts/agent_orchestrator.py agent_config.yaml --visualize
Tools Overview
1. Prompt Optimizer
Analyzes prompts for token efficiency, clarity, and structure. Generates optimized versions.
Input: Prompt text file or string Output: Analysis report with optimization suggestions
Usage:
# Analyze a prompt file
python scripts/prompt_optimizer.py prompt.txt --analyze
# Output:
# Token count: 847
# Estimated cost: $0.0025 (GPT-4)
# Clarity score: 72/100
# Issues found:
# - Ambiguous instruction at line 3
# - Missing output format specification
# - Redundant context (lines 12-15 repeat lines 5-8)
# Suggestions:
# 1. Add explicit output format: "Respond in JSON with keys: ..."
# 2. Remove redundant context to save 89 tokens
# 3. Clarify "analyze" -> "list the top 3 issues with severity ratings"
# Generate optimized version
python scripts/prompt_optimizer.py prompt.txt --optimize --output optimized.txt
# Count tokens for cost estimation
python scripts/prompt_optimizer.py prompt.txt --tokens --model gpt-4
# Extract and manage few-shot examples
python scripts/prompt_optimizer.py prompt.txt --extract-examples --output examples.json
2. RAG Evaluator
Evaluates Retrieval-Augmented Generation quality by measuring context relevance and answer faithfulness.
Input: Retrieved contexts (JSON) and questions/answers Output: Evaluation metrics and quality report
Usage:
# Evaluate retrieval quality
python scripts/rag_evaluator.py --contexts retrieved.json --questions eval_set.json
# Output:
# === RAG Evaluation Report ===
# Questions evaluated: 50
#
# Retrieval Metrics:
# Context Relevance: 0.78 (target: >0.80)
# Retrieval Precision@5: 0.72
# Coverage: 0.85
#
# Generation Metrics:
# Answer Faithfulness: 0.91
# Groundedness: 0.88
#
# Issues Found:
# - 8 questions had no relevant context in top-5
# - 3 answers contained information not in context
#
# Recommendations:
# 1. Improve chunking strategy for technical documents
# 2. Add metadata filtering for date-sensitive queries
# Evaluate with custom metrics
python scripts/rag_evaluator.py --contexts retrieved.json --questions eval_set.json \
--metrics relevance,faithfulness,coverage
# Export detailed results
python scripts/rag_evaluator.py --contexts retrieved.json --questions eval_set.json \
--output report.json --verbose
3. Agent Orchestrator
Parses agent definitions and visualizes execution flows. Validates tool configurations.
Input: Agent configuration (YAML/JSON) Output: Workflow visualization, validation report
Usage:
# Validate agent configuration
python scripts/agent_orchestrator.py agent.yaml --validate
# Output:
# === Agent Validation Report ===
# Agent: research_assistant
# Pattern: ReAct
#
# Tools (4 registered):
# [OK] web_search - API key configured
# [OK] calculator - No config needed
# [WARN] file_reader - Missing allowed_paths
# [OK] summarizer - Prompt template valid
#
# Flow Analysis:
# Max depth: 5 iterations
# Estimated tokens/run: 2,400-4,800
# Potential infinite loop: No
#
# Recommendations:
# 1. Add allowed_paths to file_reader for security
# 2. Consider adding early exit condition for simple queries
# Visualize agent workflow (ASCII)
python scripts/agent_orchestrator.py agent.yaml --visualize
# Output:
# âââââââââââââââââââââââââââââââââââââââââââ
# â research_assistant â
# â (ReAct Pattern) â
# âââââââââââââââââââ¬ââââââââââââââââââââââââ
# â
# ââââââââââ¼âââââââââ
# â User Query â
# ââââââââââ¬âââââââââ
# â
# ââââââââââ¼âââââââââ
# â Think âââââââââ
# ââââââââââ¬âââââââââ â
# â â
# ââââââââââ¼âââââââââ â
# â Select Tool â â
# ââââââââââ¬âââââââââ â
# â â
# âââââââââââââââ¼ââââââââââââââ â
# â¼ â¼ â¼ â
# [web_search] [calculator] [file_reader]
# â â â â
# âââââââââââââââ¼ââââââââââââââ â
# â â
# ââââââââââ¼âââââââââ â
# â Observe âââââââââ
# ââââââââââ¬âââââââââ
# â
# ââââââââââ¼âââââââââ
# â Final Answer â
# âââââââââââââââââââ
# Export workflow as Mermaid diagram
python scripts/agent_orchestrator.py agent.yaml --visualize --format mermaid
Prompt Engineering Workflows
Prompt Optimization Workflow
Use when improving an existing prompt’s performance or reducing token costs.
Step 1: Baseline current prompt
python scripts/prompt_optimizer.py current_prompt.txt --analyze --output baseline.json
Step 2: Identify issues Review the analysis report for:
- Token waste (redundant instructions, verbose examples)
- Ambiguous instructions (unclear output format, vague verbs)
- Missing constraints (no length limits, no format specification)
Step 3: Apply optimization patterns
| Issue | Pattern to Apply |
|---|---|
| Ambiguous output | Add explicit format specification |
| Too verbose | Extract to few-shot examples |
| Inconsistent results | Add role/persona framing |
| Missing edge cases | Add constraint boundaries |
Step 4: Generate optimized version
python scripts/prompt_optimizer.py current_prompt.txt --optimize --output optimized.txt
Step 5: Compare results
python scripts/prompt_optimizer.py optimized.txt --analyze --compare baseline.json
# Shows: token reduction, clarity improvement, issues resolved
Step 6: Validate with test cases Run both prompts against your evaluation set and compare outputs.
Few-Shot Example Design Workflow
Use when creating examples for in-context learning.
Step 1: Define the task clearly
Task: Extract product entities from customer reviews
Input: Review text
Output: JSON with {product_name, sentiment, features_mentioned}
Step 2: Select diverse examples (3-5 recommended)
| Example Type | Purpose |
|---|---|
| Simple case | Shows basic pattern |
| Edge case | Handles ambiguity |
| Complex case | Multiple entities |
| Negative case | What NOT to extract |
Step 3: Format consistently
Example 1:
Input: "Love my new iPhone 15, the camera is amazing!"
Output: {"product_name": "iPhone 15", "sentiment": "positive", "features_mentioned": ["camera"]}
Example 2:
Input: "The laptop was okay but battery life is terrible."
Output: {"product_name": "laptop", "sentiment": "mixed", "features_mentioned": ["battery life"]}
Step 4: Validate example quality
python scripts/prompt_optimizer.py prompt_with_examples.txt --validate-examples
# Checks: consistency, coverage, format alignment
Step 5: Test with held-out cases Ensure model generalizes beyond your examples.
Structured Output Design Workflow
Use when you need reliable JSON/XML/structured responses.
Step 1: Define schema
{
"type": "object",
"properties": {
"summary": {"type": "string", "maxLength": 200},
"sentiment": {"enum": ["positive", "negative", "neutral"]},
"confidence": {"type": "number", "minimum": 0, "maximum": 1}
},
"required": ["summary", "sentiment"]
}
Step 2: Include schema in prompt
Respond with JSON matching this schema:
- summary (string, max 200 chars): Brief summary of the content
- sentiment (enum): One of "positive", "negative", "neutral"
- confidence (number 0-1): Your confidence in the sentiment
Step 3: Add format enforcement
IMPORTANT: Respond ONLY with valid JSON. No markdown, no explanation.
Start your response with { and end with }
Step 4: Validate outputs
python scripts/prompt_optimizer.py structured_prompt.txt --validate-schema schema.json
Reference Documentation
| File | Contains | Load when user asks about |
|---|---|---|
references/prompt_engineering_patterns.md |
10 prompt patterns with input/output examples | “which pattern?”, “few-shot”, “chain-of-thought”, “role prompting” |
references/llm_evaluation_frameworks.md |
Evaluation metrics, scoring methods, A/B testing | “how to evaluate?”, “measure quality”, “compare prompts” |
references/agentic_system_design.md |
Agent architectures (ReAct, Plan-Execute, Tool Use) | “build agent”, “tool calling”, “multi-agent” |
Common Patterns Quick Reference
| Pattern | When to Use | Example |
|---|---|---|
| Zero-shot | Simple, well-defined tasks | “Classify this email as spam or not spam” |
| Few-shot | Complex tasks, consistent format needed | Provide 3-5 examples before the task |
| Chain-of-Thought | Reasoning, math, multi-step logic | “Think step by step…” |
| Role Prompting | Expertise needed, specific perspective | “You are an expert tax accountant…” |
| Structured Output | Need parseable JSON/XML | Include schema + format enforcement |
Common Commands
# Prompt Analysis
python scripts/prompt_optimizer.py prompt.txt --analyze # Full analysis
python scripts/prompt_optimizer.py prompt.txt --tokens # Token count only
python scripts/prompt_optimizer.py prompt.txt --optimize # Generate optimized version
# RAG Evaluation
python scripts/rag_evaluator.py --contexts ctx.json --questions q.json # Evaluate
python scripts/rag_evaluator.py --contexts ctx.json --compare baseline # Compare to baseline
# Agent Development
python scripts/agent_orchestrator.py agent.yaml --validate # Validate config
python scripts/agent_orchestrator.py agent.yaml --visualize # Show workflow
python scripts/agent_orchestrator.py agent.yaml --estimate-cost # Token estimation