data-migration-scripts

📁 aj-geddes/useful-ai-prompts 📅 Jan 21, 2026
59
总安装量
59
周安装量
#3697
全站排名
安装命令
npx skills add https://github.com/aj-geddes/useful-ai-prompts --skill data-migration-scripts

Agent 安装分布

claude-code 50
opencode 45
gemini-cli 41
codex 39
cursor 37

Skill 文档

Data Migration Scripts

Overview

Create robust, safe, and reversible data migration scripts for database schema changes and data transformations with minimal downtime.

When to Use

  • Database schema changes
  • Adding/removing/modifying columns
  • Migrating between database systems
  • Data transformations and cleanup
  • Splitting or merging tables
  • Changing data types
  • Adding indexes and constraints
  • Backfilling data
  • Multi-tenant data migrations

Migration Principles

  1. Reversible – Every migration should have a rollback
  2. Idempotent – Safe to run multiple times
  3. Atomic – All-or-nothing execution
  4. Tested – Test on production-like data
  5. Monitored – Track progress and errors
  6. Documented – Clear purpose and side effects

Implementation Examples

1. Knex.js Migrations (Node.js)

import { Knex } from 'knex';

// migrations/20240101000000_add_user_preferences.ts
export async function up(knex: Knex): Promise<void> {
  // Create new table
  await knex.schema.createTable('user_preferences', (table) => {
    table.uuid('id').primary().defaultTo(knex.raw('gen_random_uuid()'));
    table.uuid('user_id').notNullable().references('id').inTable('users').onDelete('CASCADE');
    table.jsonb('preferences').defaultTo('{}');
    table.timestamp('created_at').defaultTo(knex.fn.now());
    table.timestamp('updated_at').defaultTo(knex.fn.now());

    table.index('user_id');
  });

  // Migrate existing data
  await knex.raw(`
    INSERT INTO user_preferences (user_id, preferences)
    SELECT id, jsonb_build_object(
      'theme', COALESCE(theme, 'light'),
      'notifications', COALESCE(notifications_enabled, true)
    )
    FROM users
    WHERE theme IS NOT NULL OR notifications_enabled IS NOT NULL
  `);

  console.log('Migrated user preferences for', await knex('user_preferences').count());
}

export async function down(knex: Knex): Promise<void> {
  // Restore data to original table
  await knex.raw(`
    UPDATE users u
    SET
      theme = (p.preferences->>'theme'),
      notifications_enabled = (p.preferences->>'notifications')::boolean
    FROM user_preferences p
    WHERE u.id = p.user_id
  `);

  // Drop new table
  await knex.schema.dropTableIfExists('user_preferences');
}
// migrations/20240102000000_add_email_verification.ts
export async function up(knex: Knex): Promise<void> {
  // Add new columns
  await knex.schema.table('users', (table) => {
    table.boolean('email_verified').defaultTo(false);
    table.timestamp('email_verified_at').nullable();
    table.string('verification_token').nullable();
  });

  // Backfill verified status for existing users
  await knex('users')
    .where('created_at', '<', knex.raw("NOW() - INTERVAL '30 days'"))
    .update({
      email_verified: true,
      email_verified_at: knex.fn.now()
    });

  // Add index
  await knex.schema.table('users', (table) => {
    table.index('verification_token');
  });
}

export async function down(knex: Knex): Promise<void> {
  await knex.schema.table('users', (table) => {
    table.dropIndex('verification_token');
    table.dropColumn('email_verified');
    table.dropColumn('email_verified_at');
    table.dropColumn('verification_token');
  });
}

2. Alembic Migrations (Python/SQLAlchemy)

"""Add user roles and permissions

Revision ID: a1b2c3d4e5f6
Revises: previous_revision
Create Date: 2024-01-01 00:00:00

"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql

# revision identifiers
revision = 'a1b2c3d4e5f6'
down_revision = 'previous_revision'
branch_labels = None
depends_on = None


def upgrade():
    # Create roles table
    op.create_table(
        'roles',
        sa.Column('id', sa.Integer(), primary_key=True),
        sa.Column('name', sa.String(50), unique=True, nullable=False),
        sa.Column('description', sa.Text()),
        sa.Column('created_at', sa.DateTime(), server_default=sa.func.now()),
    )

    # Create user_roles junction table
    op.create_table(
        'user_roles',
        sa.Column('user_id', sa.Integer(), sa.ForeignKey('users.id', ondelete='CASCADE')),
        sa.Column('role_id', sa.Integer(), sa.ForeignKey('roles.id', ondelete='CASCADE')),
        sa.Column('assigned_at', sa.DateTime(), server_default=sa.func.now()),
        sa.PrimaryKeyConstraint('user_id', 'role_id')
    )

    # Create indexes
    op.create_index('idx_user_roles_user_id', 'user_roles', ['user_id'])
    op.create_index('idx_user_roles_role_id', 'user_roles', ['role_id'])

    # Insert default roles
    op.execute("""
        INSERT INTO roles (name, description) VALUES
        ('admin', 'Administrator with full access'),
        ('user', 'Standard user'),
        ('guest', 'Guest with limited access')
    """)

    # Migrate existing users to default role
    op.execute("""
        INSERT INTO user_roles (user_id, role_id)
        SELECT u.id, r.id
        FROM users u
        CROSS JOIN roles r
        WHERE r.name = 'user'
    """)


def downgrade():
    # Drop tables in reverse order
    op.drop_index('idx_user_roles_role_id', 'user_roles')
    op.drop_index('idx_user_roles_user_id', 'user_roles')
    op.drop_table('user_roles')
    op.drop_table('roles')

3. Large Data Migration with Batching

import { Knex } from 'knex';

interface MigrationProgress {
  total: number;
  processed: number;
  errors: number;
  startTime: number;
}

class LargeDataMigration {
  private batchSize = 1000;
  private progress: MigrationProgress = {
    total: 0,
    processed: 0,
    errors: 0,
    startTime: Date.now()
  };

  async migrate(knex: Knex): Promise<void> {
    console.log('Starting large data migration...');

    // Get total count
    const result = await knex('old_table').count('* as count').first();
    this.progress.total = parseInt(result?.count as string || '0');

    console.log(`Total records to migrate: ${this.progress.total}`);

    // Process in batches
    let offset = 0;
    while (offset < this.progress.total) {
      await this.processBatch(knex, offset);
      offset += this.batchSize;

      // Log progress
      this.logProgress();

      // Small delay to avoid overwhelming the database
      await this.delay(100);
    }

    console.log('Migration complete!');
    this.logProgress();
  }

  private async processBatch(knex: Knex, offset: number): Promise<void> {
    const trx = await knex.transaction();

    try {
      // Fetch batch
      const records = await trx('old_table')
        .select('*')
        .limit(this.batchSize)
        .offset(offset);

      // Transform and insert
      const transformed = records.map(record => this.transformRecord(record));

      if (transformed.length > 0) {
        await trx('new_table')
          .insert(transformed)
          .onConflict('id')
          .merge(); // Upsert
      }

      await trx.commit();

      this.progress.processed += records.length;
    } catch (error) {
      await trx.rollback();
      console.error(`Batch failed at offset ${offset}:`, error);
      this.progress.errors += this.batchSize;

      // Continue or abort based on error severity
      throw error;
    }
  }

  private transformRecord(record: any): any {
    return {
      id: record.id,
      user_id: record.userId,
      data: JSON.stringify(record.legacyData),
      created_at: record.createdAt,
      updated_at: new Date()
    };
  }

  private logProgress(): void {
    const percent = ((this.progress.processed / this.progress.total) * 100).toFixed(2);
    const elapsed = Date.now() - this.progress.startTime;
    const rate = this.progress.processed / (elapsed / 1000);

    console.log(
      `Progress: ${this.progress.processed}/${this.progress.total} (${percent}%) ` +
      `Errors: ${this.progress.errors} ` +
      `Rate: ${rate.toFixed(2)} records/sec`
    );
  }

  private delay(ms: number): Promise<void> {
    return new Promise(resolve => setTimeout(resolve, ms));
  }
}

// Usage in migration
export async function up(knex: Knex): Promise<void> {
  const migration = new LargeDataMigration();
  await migration.migrate(knex);
}

4. Zero-Downtime Migration Pattern

// Phase 1: Add new column (nullable)
export async function up_phase1(knex: Knex): Promise<void> {
  await knex.schema.table('users', (table) => {
    table.string('email_new').nullable();
  });

  console.log('Phase 1: Added new column');
}

// Phase 2: Backfill data
export async function up_phase2(knex: Knex): Promise<void> {
  const batchSize = 1000;
  let processed = 0;

  while (true) {
    const result = await knex('users')
      .whereNull('email_new')
      .whereNotNull('email')
      .limit(batchSize)
      .update({
        email_new: knex.raw('email')
      });

    processed += result;

    if (result < batchSize) break;

    console.log(`Backfilled ${processed} records`);
    await new Promise(resolve => setTimeout(resolve, 100));
  }

  console.log(`Phase 2: Backfilled ${processed} total records`);
}

// Phase 3: Add constraint
export async function up_phase3(knex: Knex): Promise<void> {
  await knex.schema.alterTable('users', (table) => {
    table.string('email_new').notNullable().alter();
    table.unique('email_new');
  });

  console.log('Phase 3: Added constraints');
}

// Phase 4: Drop old column
export async function up_phase4(knex: Knex): Promise<void> {
  await knex.schema.table('users', (table) => {
    table.dropColumn('email');
  });

  await knex.schema.table('users', (table) => {
    table.renameColumn('email_new', 'email');
  });

  console.log('Phase 4: Completed migration');
}

5. Migration Validation

class MigrationValidator {
  async validate(knex: Knex, migration: string): Promise<boolean> {
    console.log(`Validating migration: ${migration}`);

    const checks = [
      this.checkDataIntegrity(knex),
      this.checkConstraints(knex),
      this.checkIndexes(knex),
      this.checkRowCounts(knex)
    ];

    const results = await Promise.all(checks);
    const passed = results.every(r => r);

    if (passed) {
      console.log('✓ All validation checks passed');
    } else {
      console.error('✗ Validation failed');
    }

    return passed;
  }

  private async checkDataIntegrity(knex: Knex): Promise<boolean> {
    // Check for orphaned records
    const orphaned = await knex('user_roles')
      .leftJoin('users', 'user_roles.user_id', 'users.id')
      .whereNull('users.id')
      .count('* as count')
      .first();

    const count = parseInt(orphaned?.count as string || '0');

    if (count > 0) {
      console.error(`Found ${count} orphaned user_roles records`);
      return false;
    }

    console.log('✓ Data integrity check passed');
    return true;
  }

  private async checkConstraints(knex: Knex): Promise<boolean> {
    // Verify constraints exist
    const result = await knex.raw(`
      SELECT COUNT(*) as count
      FROM information_schema.table_constraints
      WHERE table_name = 'users'
      AND constraint_type = 'UNIQUE'
      AND constraint_name LIKE '%email%'
    `);

    const hasConstraint = result.rows[0].count > 0;

    if (!hasConstraint) {
      console.error('Email unique constraint missing');
      return false;
    }

    console.log('✓ Constraints check passed');
    return true;
  }

  private async checkIndexes(knex: Knex): Promise<boolean> {
    // Verify indexes exist
    const result = await knex.raw(`
      SELECT indexname
      FROM pg_indexes
      WHERE tablename = 'users'
      AND indexname LIKE '%email%'
    `);

    if (result.rows.length === 0) {
      console.error('Email index missing');
      return false;
    }

    console.log('✓ Indexes check passed');
    return true;
  }

  private async checkRowCounts(knex: Knex): Promise<boolean> {
    const [oldCount, newCount] = await Promise.all([
      knex('users').count('* as count').first(),
      knex('user_preferences').count('* as count').first()
    ]);

    const old = parseInt(oldCount?.count as string || '0');
    const new_ = parseInt(newCount?.count as string || '0');

    if (Math.abs(old - new_) > old * 0.01) {
      console.error(`Row count mismatch: ${old} vs ${new_}`);
      return false;
    }

    console.log('✓ Row counts check passed');
    return true;
  }
}

// Usage
export async function up(knex: Knex): Promise<void> {
  // Run migration
  await performMigration(knex);

  // Validate
  const validator = new MigrationValidator();
  const valid = await validator.validate(knex, 'add_user_preferences');

  if (!valid) {
    throw new Error('Migration validation failed');
  }
}

6. Cross-Database Migration

from sqlalchemy import create_engine, MetaData, Table
from sqlalchemy.orm import sessionmaker
import logging

logger = logging.getLogger(__name__)

class CrossDatabaseMigration:
    def __init__(self, source_url: str, target_url: str):
        self.source_engine = create_engine(source_url)
        self.target_engine = create_engine(target_url)

        self.source_session = sessionmaker(bind=self.source_engine)()
        self.target_session = sessionmaker(bind=self.target_engine)()

    def migrate_table(self, table_name: str, batch_size: int = 1000):
        """Migrate table from source to target database."""
        logger.info(f"Starting migration of table: {table_name}")

        # Get table metadata
        metadata = MetaData()
        source_table = Table(
            table_name,
            metadata,
            autoload_with=self.source_engine
        )

        # Get total count
        total = self.source_session.execute(
            source_table.select().with_only_columns(func.count())
        ).scalar()

        logger.info(f"Total records to migrate: {total}")

        # Migrate in batches
        offset = 0
        while offset < total:
            # Fetch batch from source
            results = self.source_session.execute(
                source_table.select()
                .limit(batch_size)
                .offset(offset)
            ).fetchall()

            if not results:
                break

            # Transform and insert to target
            rows = [dict(row._mapping) for row in results]
            transformed = [self.transform_row(row) for row in rows]

            self.target_session.execute(
                source_table.insert(),
                transformed
            )
            self.target_session.commit()

            offset += batch_size
            logger.info(f"Migrated {offset}/{total} records")

        logger.info(f"Completed migration of {table_name}")

    def transform_row(self, row: dict) -> dict:
        """Transform row data if needed."""
        # Apply any transformations
        return row

    def cleanup(self):
        """Close connections."""
        self.source_session.close()
        self.target_session.close()

Best Practices

✅ DO

  • Always write both up and down migrations
  • Test migrations on production-like data
  • Use transactions for atomic operations
  • Process large datasets in batches
  • Add indexes after data insertion
  • Validate data after migration
  • Log progress and errors
  • Use feature flags for application code changes
  • Back up database before running migrations
  • Test rollback procedures
  • Document migration side effects
  • Version control all migrations
  • Use idempotent operations

❌ DON’T

  • Run untested migrations on production
  • Make breaking changes without backwards compatibility
  • Process millions of rows in single transaction
  • Skip rollback implementation
  • Ignore migration failures
  • Modify old migrations
  • Delete data without backups
  • Run migrations manually in production

Migration Checklist

  • Migration has both up and down
  • Tested on production-like dataset
  • Transactions used appropriately
  • Large datasets processed in batches
  • Indexes added after data insertion
  • Data validation included
  • Progress logging implemented
  • Error handling included
  • Rollback tested
  • Documentation written
  • Backup taken
  • Team reviewed

Resources