java-architect
npx skills add https://github.com/404kidwiz/claude-supercode-skills --skill java-architect
Agent 安装分布
Skill 文档
Java Architect Specialist
Purpose
Provides expert Java architecture expertise specializing in Java 21, Spring Boot 3, and Jakarta EE ecosystem. Designs enterprise-grade applications with modern Java features (virtual threads, pattern matching), microservices architecture, and comprehensive enterprise integration patterns for scalable, maintainable systems.
When to Use
- Building enterprise applications with Spring Boot 3 (microservices, REST APIs)
- Implementing Java 21 features (virtual threads, pattern matching, records, sealed classes)
- Designing microservices architecture with Spring Cloud (service discovery, circuit breakers)
- Developing Jakarta EE applications (CDI, JPA, JAX-RS)
- Creating reactive applications with Spring WebFlux
- Building event-driven systems (Kafka, RabbitMQ)
- Optimizing JVM performance (GC tuning, profiling)
Core Capabilities
Enterprise Architecture
- Designing microservices and monolith architectures
- Implementing domain-driven design patterns (aggregates, bounded contexts)
- Configuring Spring Cloud ecosystem (Eureka, Config, Gateway)
- Building API-first architectures with OpenAPI/Swagger
Modern Java Development
- Implementing Java 21 virtual threads for high concurrency
- Using pattern matching and sealed classes for type safety
- Building records and data classes for immutable models
- Applying functional programming patterns with streams
Spring Ecosystem
- Spring Boot application configuration and deployment
- Spring Data JPA for database access and optimization
- Spring Security for authentication and authorization
- Spring WebFlux for reactive, non-blocking applications
Performance Optimization
- JVM tuning and garbage collection configuration
- Memory profiling and leak detection
- Connection pooling and database optimization
- Application startup optimization with GraalVM
2. Decision Framework
Spring Framework Selection Decision Tree
Application Requirements
â
ââ Need reactive, non-blocking I/O?
â ââ Spring WebFlux â
â - Netty/Reactor runtime
â - Backpressure support
â - High concurrency (100K+ connections)
â
ââ Traditional servlet-based web app?
â ââ Spring MVC â
â - Tomcat/Jetty runtime
â - Familiar blocking model
â - Easier debugging
â
ââ Microservices with service discovery?
â ââ Spring Cloud â
â - Eureka/Consul for discovery
â - Config server
â - API gateway (Spring Cloud Gateway)
â
ââ Batch processing?
â ââ Spring Batch â
â - Chunk-oriented processing
â - Job scheduling
â - Transaction management
â
ââ Need minimal footprint?
ââ Spring Boot with GraalVM Native Image â
- AOT compilation
- Fast startup (<100ms)
- Low memory (<50MB)
JPA vs JDBC Decision Matrix
| Factor | Use JPA/Hibernate | Use JDBC (Spring JdbcTemplate) |
|---|---|---|
| Complexity | Complex domain models with relationships | Simple queries, reporting |
| Performance | OLTP with caching (2nd-level cache) | OLAP, bulk operations |
| Type safety | Criteria API, type-safe queries | Plain SQL with RowMapper |
| Maintenance | Schema evolution with migrations | Direct SQL control |
| Learning curve | Steeper (lazy loading, cascades) | Simpler, explicit |
| N+1 queries | Risk (needs @EntityGraph, fetch joins) | Explicit control |
Example decision: E-commerce order system with relationships â JPA (Order â OrderItems â Products)
Example decision: Analytics dashboard with aggregations â JDBC (complex SQL, performance-critical)
Virtual Threads (Project Loom) Decision Path
Concurrency Requirements
â
ââ High thread count (>1000 threads)?
â ââ Virtual Threads â
â - Millions of threads possible
â - No thread pool tuning
â - Blocking code becomes cheap
â
ââ I/O-bound operations (DB, HTTP)?
â ââ Virtual Threads â
â - JDBC calls don't block platform threads
â - HTTP client calls scale better
â
ââ CPU-bound operations?
â ââ Platform Threads (ForkJoinPool) â
â - Virtual threads don't help
â - Use parallel streams
â
ââ Need compatibility with existing code?
ââ Virtual Threads â
- Drop-in replacement for Thread
- No code changes required
Red Flags â Escalate to Oracle
| Observation | Why Escalate | Example |
|---|---|---|
| JPA N+1 queries causing 1000+ DB calls | Complex lazy loading issue | “Single page load triggers 500 SELECT queries” |
| Circular dependency in Spring beans | Architectural design problem | “BeanCurrentlyInCreationException during startup” |
| Memory leak despite GC tuning | Complex object retention | “Heap grows to max despite Full GC, heap dump shows mysterious retention” |
| Distributed transaction spanning multiple microservices | SAGA pattern or compensating transactions | “Need ACID across Order, Payment, Inventory services” |
| Reactive stream backpressure overload | Complex reactive pipeline | “Flux overproducing, downstream can’t keep up” |
Workflow 2: Event-Driven Microservice with Kafka
Scenario: Implement event sourcing for order service
Step 1: Configure Spring Kafka
// Configuration/KafkaConfig.java
@Configuration
@EnableKafka
public class KafkaConfig {
@Value("${spring.kafka.bootstrap-servers}")
private String bootstrapServers;
@Bean
public ProducerFactory<String, DomainEvent> producerFactory() {
Map<String, Object> config = Map.of(
ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers,
ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class,
ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, JsonSerializer.class,
ProducerConfig.ACKS_CONFIG, "all",
ProducerConfig.RETRIES_CONFIG, 3,
ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG, true
);
return new DefaultKafkaProducerFactory<>(config);
}
@Bean
public KafkaTemplate<String, DomainEvent> kafkaTemplate() {
return new KafkaTemplate<>(producerFactory());
}
@Bean
public ConsumerFactory<String, DomainEvent> consumerFactory() {
Map<String, Object> config = Map.of(
ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers,
ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class,
ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, JsonDeserializer.class,
ConsumerConfig.GROUP_ID_CONFIG, "order-service",
ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest",
ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false,
JsonDeserializer.TRUSTED_PACKAGES, "com.example.order.domain.events"
);
return new DefaultKafkaConsumerFactory<>(config);
}
}
Step 2: Define domain events
// Domain/Events/DomainEvent.java
public sealed interface DomainEvent permits
OrderCreated, OrderItemAdded, OrderProcessingStarted, OrderCompleted, OrderCancelled {
UUID aggregateId();
LocalDateTime occurredAt();
long version();
}
public record OrderCreated(
UUID aggregateId,
UUID customerId,
LocalDateTime occurredAt,
long version
) implements DomainEvent {}
public record OrderItemAdded(
UUID aggregateId,
UUID productId,
int quantity,
BigDecimal unitPrice,
LocalDateTime occurredAt,
long version
) implements DomainEvent {}
public record OrderCompleted(
UUID aggregateId,
BigDecimal totalAmount,
LocalDateTime occurredAt,
long version
) implements DomainEvent {}
Step 3: Event publisher
// Infrastructure/EventPublisher.java
@Component
public class DomainEventPublisher {
private final KafkaTemplate<String, DomainEvent> kafkaTemplate;
private static final String TOPIC = "order-events";
public DomainEventPublisher(KafkaTemplate<String, DomainEvent> kafkaTemplate) {
this.kafkaTemplate = kafkaTemplate;
}
@Async
public CompletableFuture<Void> publish(DomainEvent event) {
return kafkaTemplate.send(TOPIC, event.aggregateId().toString(), event)
.thenAccept(result -> {
var metadata = result.getRecordMetadata();
log.info("Published event: {} to partition {} offset {}",
event.getClass().getSimpleName(),
metadata.partition(),
metadata.offset());
})
.exceptionally(ex -> {
log.error("Failed to publish event: {}", event, ex);
return null;
});
}
}
Step 4: Event consumer
// Infrastructure/OrderEventConsumer.java
@Component
public class OrderEventConsumer {
private final OrderProjectionService projectionService;
@KafkaListener(
topics = "order-events",
groupId = "order-read-model",
containerFactory = "kafkaListenerContainerFactory"
)
public void handleEvent(
@Payload DomainEvent event,
@Header(KafkaHeaders.RECEIVED_PARTITION) int partition,
@Header(KafkaHeaders.OFFSET) long offset
) {
log.info("Received event: {} from partition {} offset {}",
event.getClass().getSimpleName(), partition, offset);
switch (event) {
case OrderCreated e -> projectionService.handleOrderCreated(e);
case OrderItemAdded e -> projectionService.handleOrderItemAdded(e);
case OrderCompleted e -> projectionService.handleOrderCompleted(e);
case OrderCancelled e -> projectionService.handleOrderCancelled(e);
default -> log.warn("Unknown event type: {}", event);
}
}
}
Expected outcome:
- Event-driven architecture with Kafka
- Type-safe event handling (sealed interfaces, pattern matching)
- Async event publishing with CompletableFuture
- Idempotent event processing
4. Patterns & Templates
Pattern 1: Repository Pattern with Specifications
Use case: Type-safe dynamic queries
// Specification for dynamic filtering
public class OrderSpecifications {
public static Specification<Order> hasCustomerId(CustomerId customerId) {
return (root, query, cb) ->
cb.equal(root.get("customerId"), customerId);
}
public static Specification<Order> hasStatus(OrderStatus status) {
return (root, query, cb) ->
cb.equal(root.get("status"), status);
}
public static Specification<Order> createdBetween(LocalDateTime start, LocalDateTime end) {
return (root, query, cb) ->
cb.between(root.get("createdAt"), start, end);
}
public static Specification<Order> totalGreaterThan(BigDecimal amount) {
return (root, query, cb) ->
cb.greaterThan(root.get("totalAmount"), amount);
}
}
// Usage: Combine specifications
Specification<Order> spec = Specification
.where(hasCustomerId(customerId))
.and(hasStatus(new OrderStatus.Pending()))
.and(createdBetween(startDate, endDate));
List<Order> orders = orderRepository.findAll(spec);
Pattern 3: CQRS with Separate Read/Write Models
Use case: Optimize reads independently from writes
// Write model (domain entity)
@Entity
public class Order {
// Rich behavior, complex relationships
public void addItem(Product product, int quantity) { ... }
public void complete() { ... }
}
// Read model (denormalized projection)
@Entity
@Table(name = "order_summary")
@Immutable
public class OrderSummary {
@Id
private UUID orderId;
private UUID customerId;
private String customerName;
private int itemCount;
private BigDecimal totalAmount;
private String status;
private LocalDateTime createdAt;
// Getters only (no setters, immutable)
}
// Read repository (optimized queries)
public interface OrderSummaryRepository extends JpaRepository<OrderSummary, UUID> {
@Query("""
SELECT os FROM OrderSummary os
WHERE os.customerId = :customerId
ORDER BY os.createdAt DESC
""")
List<OrderSummary> findByCustomerId(@Param("customerId") UUID customerId);
}
â Anti-Pattern: LazyInitializationException
What it looks like:
@Service
@Transactional
public class OrderService {
public Order findById(OrderId id) {
return orderRepository.findById(id).orElseThrow();
}
}
@RestController
public class OrderController {
@GetMapping("/orders/{id}")
public OrderDto getOrder(@PathVariable UUID id) {
Order order = orderService.findById(new OrderId(id));
// Transaction already closed!
var items = order.getItems(); // LazyInitializationException!
return new OrderDto(order, items);
}
}
Why it fails:
- Lazy loading outside transaction: Hibernate proxy can’t load data
- N+1 queries: Even if transaction open, lazy loads trigger multiple queries
Correct approach:
// Option 1: Eager fetch with @EntityGraph
@Repository
public interface OrderRepository extends JpaRepository<Order, OrderId> {
@EntityGraph(attributePaths = {"items", "items.product"})
Optional<Order> findById(OrderId id);
}
// Option 2: DTO projection (no lazy loading)
@Query("""
SELECT new com.example.dto.OrderDto(
o.id, o.customerId, o.totalAmount,
COUNT(i.id), o.status, o.createdAt
)
FROM Order o
LEFT JOIN o.items i
WHERE o.id = :id
GROUP BY o.id, o.customerId, o.totalAmount, o.status, o.createdAt
""")
Optional<OrderDto> findOrderDtoById(@Param("id") OrderId id);
// Option 3: Open Session in View (not recommended for APIs)
spring.jpa.open-in-view: false // Disable to catch lazy loading issues early
6. Integration Patterns
backend-developer:
- Handoff: Backend-developer defines business logic â java-architect implements with Spring Boot patterns
- Collaboration: REST API design, database schema, authentication/authorization
- Tools: Spring Boot, Spring Security, Spring Data JPA, Jackson
- Example: Backend defines order workflow â java-architect implements with DDD aggregates and domain events
database-optimizer:
- Handoff: Java-architect identifies slow JPA queries â database-optimizer creates indexes
- Collaboration: Query optimization, connection pooling, transaction tuning
- Tools: Hibernate statistics, JPA Criteria API, native queries
- Example: N+1 query problem â database-optimizer adds composite index on foreign keys
devops-engineer:
- Handoff: Java-architect builds Spring Boot app â devops-engineer containerizes with Docker
- Collaboration: Health checks, metrics (Actuator), graceful shutdown
- Tools: Spring Boot Actuator, Micrometer, Docker multi-stage builds
- Example: Java-architect exposes /actuator/health â devops-engineer configures Kubernetes liveness probe
kubernetes-specialist:
- Handoff: Java-architect builds microservice â kubernetes-specialist deploys to K8s
- Collaboration: Readiness probes, resource limits, rolling updates
- Tools: Spring Cloud Kubernetes, ConfigMaps, Secrets
- Example: Java-architect uses @ConfigurationProperties â kubernetes-specialist provides ConfigMap
graphql-architect:
- Handoff: Java-architect provides domain model â graphql-architect exposes as GraphQL API
- Collaboration: Schema design, N+1 prevention with DataLoader
- Tools: Spring GraphQL, GraphQL Java, DataLoader
- Example: Order aggregate â GraphQL type with resolvers and subscriptions