python-sdk

📁 1nfsh/skills 📅 3 days ago
153
总安装量
153
周安装量
#1655
全站排名
安装命令
npx skills add https://github.com/1nfsh/skills --skill python-sdk

Agent 安装分布

gemini-cli 150
github-copilot 150
codex 150
amp 150
opencode 150

Skill 文档

Python SDK

Build AI applications with the inference.sh Python SDK.

Python SDK

Quick Start

pip install inferencesh
from inferencesh import inference

client = inference(api_key="inf_your_key")

# Run an AI app
result = client.run({
    "app": "infsh/flux-schnell",
    "input": {"prompt": "A sunset over mountains"}
})
print(result["output"])

Installation

# Standard installation
pip install inferencesh

# With async support
pip install inferencesh[async]

Requirements: Python 3.8+

Authentication

import os
from inferencesh import inference

# Direct API key
client = inference(api_key="inf_your_key")

# From environment variable (recommended)
client = inference(api_key=os.environ["INFERENCE_API_KEY"])

Get your API key: Settings → API Keys → Create API Key

Running Apps

Basic Execution

result = client.run({
    "app": "infsh/flux-schnell",
    "input": {"prompt": "A cat astronaut"}
})

print(result["status"])  # "completed"
print(result["output"])  # Output data

Fire and Forget

task = client.run({
    "app": "google/veo-3-1-fast",
    "input": {"prompt": "Drone flying over mountains"}
}, wait=False)

print(f"Task ID: {task['id']}")
# Check later with client.get_task(task['id'])

Streaming Progress

for update in client.run({
    "app": "google/veo-3-1-fast",
    "input": {"prompt": "Ocean waves at sunset"}
}, stream=True):
    print(f"Status: {update['status']}")
    if update.get("logs"):
        print(update["logs"][-1])

Run Parameters

Parameter Type Description
app string App ID (namespace/name@version)
input dict Input matching app schema
setup dict Hidden setup configuration
infra string ‘cloud’ or ‘private’
session string Session ID for stateful execution
session_timeout int Idle timeout (1-3600 seconds)

File Handling

Automatic Upload

result = client.run({
    "app": "image-processor",
    "input": {
        "image": "/path/to/image.png"  # Auto-uploaded
    }
})

Manual Upload

from inferencesh import UploadFileOptions

# Basic upload
file = client.upload_file("/path/to/image.png")

# With options
file = client.upload_file(
    "/path/to/image.png",
    UploadFileOptions(
        filename="custom_name.png",
        content_type="image/png",
        public=True
    )
)

result = client.run({
    "app": "image-processor",
    "input": {"image": file["uri"]}
})

Sessions (Stateful Execution)

Keep workers warm across multiple calls:

# Start new session
result = client.run({
    "app": "my-app",
    "input": {"action": "init"},
    "session": "new",
    "session_timeout": 300  # 5 minutes
})
session_id = result["session_id"]

# Continue in same session
result = client.run({
    "app": "my-app",
    "input": {"action": "process"},
    "session": session_id
})

Agent SDK

Template Agents

Use pre-built agents from your workspace:

agent = client.agent("my-team/support-agent@latest")

# Send message
response = agent.send_message("Hello!")
print(response.text)

# Multi-turn conversation
response = agent.send_message("Tell me more")

# Reset conversation
agent.reset()

# Get chat history
chat = agent.get_chat()

Ad-hoc Agents

Create custom agents programmatically:

from inferencesh import tool, string, number, app_tool

# Define tools
calculator = (
    tool("calculate")
    .describe("Perform a calculation")
    .param("expression", string("Math expression"))
    .build()
)

image_gen = (
    app_tool("generate_image", "infsh/flux-schnell@latest")
    .describe("Generate an image")
    .param("prompt", string("Image description"))
    .build()
)

# Create agent
agent = client.agent({
    "core_app": {"ref": "infsh/claude-sonnet-4@latest"},
    "system_prompt": "You are a helpful assistant.",
    "tools": [calculator, image_gen],
    "temperature": 0.7,
    "max_tokens": 4096
})

response = agent.send_message("What is 25 * 4?")

Available Core Apps

Model App Reference
Claude Sonnet 4 infsh/claude-sonnet-4@latest
Claude 3.5 Haiku infsh/claude-haiku-35@latest
GPT-4o infsh/gpt-4o@latest
GPT-4o Mini infsh/gpt-4o-mini@latest

Tool Builder API

Parameter Types

from inferencesh import (
    string, number, integer, boolean,
    enum_of, array, obj, optional
)

name = string("User's name")
age = integer("Age in years")
score = number("Score 0-1")
active = boolean("Is active")
priority = enum_of(["low", "medium", "high"], "Priority")
tags = array(string("Tag"), "List of tags")
address = obj({
    "street": string("Street"),
    "city": string("City"),
    "zip": optional(string("ZIP"))
}, "Address")

Client Tools (Run in Your Code)

greet = (
    tool("greet")
    .display("Greet User")
    .describe("Greets a user by name")
    .param("name", string("Name to greet"))
    .require_approval()
    .build()
)

App Tools (Call AI Apps)

generate = (
    app_tool("generate_image", "infsh/flux-schnell@latest")
    .describe("Generate an image from text")
    .param("prompt", string("Image description"))
    .setup({"model": "schnell"})
    .input({"steps": 20})
    .require_approval()
    .build()
)

Agent Tools (Delegate to Sub-agents)

from inferencesh import agent_tool

researcher = (
    agent_tool("research", "my-org/researcher@v1")
    .describe("Research a topic")
    .param("topic", string("Topic to research"))
    .build()
)

Webhook Tools (Call External APIs)

from inferencesh import webhook_tool

notify = (
    webhook_tool("slack", "https://hooks.slack.com/...")
    .describe("Send Slack notification")
    .secret("SLACK_SECRET")
    .param("channel", string("Channel"))
    .param("message", string("Message"))
    .build()
)

Internal Tools (Built-in Capabilities)

from inferencesh import internal_tools

config = (
    internal_tools()
    .plan()
    .memory()
    .web_search(True)
    .code_execution(True)
    .image_generation({
        "enabled": True,
        "app_ref": "infsh/flux@latest"
    })
    .build()
)

agent = client.agent({
    "core_app": {"ref": "infsh/claude-sonnet-4@latest"},
    "internal_tools": config
})

Streaming Agent Responses

def handle_message(msg):
    if msg.get("content"):
        print(msg["content"], end="", flush=True)

def handle_tool(call):
    print(f"\n[Tool: {call.name}]")
    result = execute_tool(call.name, call.args)
    agent.submit_tool_result(call.id, result)

response = agent.send_message(
    "Explain quantum computing",
    on_message=handle_message,
    on_tool_call=handle_tool
)

File Attachments

# From file path
with open("image.png", "rb") as f:
    response = agent.send_message(
        "What's in this image?",
        files=[f.read()]
    )

# From base64
response = agent.send_message(
    "Analyze this",
    files=["..."]
)

Skills (Reusable Context)

agent = client.agent({
    "core_app": {"ref": "infsh/claude-sonnet-4@latest"},
    "skills": [
        {
            "name": "code-review",
            "description": "Code review guidelines",
            "content": "# Code Review\n\n1. Check security\n2. Check performance..."
        },
        {
            "name": "api-docs",
            "description": "API documentation",
            "url": "https://example.com/skills/api-docs.md"
        }
    ]
})

Async Support

from inferencesh import async_inference
import asyncio

async def main():
    client = async_inference(api_key="inf_...")

    # Async app execution
    result = await client.run({
        "app": "infsh/flux-schnell",
        "input": {"prompt": "A galaxy"}
    })

    # Async agent
    agent = client.agent("my-org/assistant@latest")
    response = await agent.send_message("Hello!")

    # Async streaming
    async for msg in agent.stream_messages():
        print(msg)

asyncio.run(main())

Error Handling

from inferencesh import RequirementsNotMetException

try:
    result = client.run({"app": "my-app", "input": {...}})
except RequirementsNotMetException as e:
    print(f"Missing requirements:")
    for err in e.errors:
        print(f"  - {err['type']}: {err['key']}")
except RuntimeError as e:
    print(f"Error: {e}")

Human Approval Workflows

def handle_tool(call):
    if call.requires_approval:
        # Show to user, get confirmation
        approved = prompt_user(f"Allow {call.name}?")
        if approved:
            result = execute_tool(call.name, call.args)
            agent.submit_tool_result(call.id, result)
        else:
            agent.submit_tool_result(call.id, {"error": "Denied by user"})

response = agent.send_message(
    "Delete all temp files",
    on_tool_call=handle_tool
)

Reference Files

Related Skills

# JavaScript SDK
npx skills add inference-sh/skills@javascript-sdk

# Full platform skill (all 150+ apps via CLI)
npx skills add inference-sh/skills@inference-sh

# LLM models
npx skills add inference-sh/skills@llm-models

# Image generation
npx skills add inference-sh/skills@ai-image-generation

Documentation