python-executor

📁 1nfsh/skills 📅 3 days ago
133
总安装量
133
周安装量
#1818
全站排名
安装命令
npx skills add https://github.com/1nfsh/skills --skill python-executor

Agent 安装分布

opencode 130
gemini-cli 130
codex 130
github-copilot 129
kimi-cli 129

Skill 文档

Python Code Executor

Execute Python code in a safe, sandboxed environment with 100+ pre-installed libraries.

Python Code Executor

Quick Start

curl -fsSL https://cli.inference.sh | sh && infsh login

# Run Python code
infsh app run infsh/python-executor --input '{
  "code": "import pandas as pd\nprint(pd.__version__)"
}'

App Details

Property Value
App ID infsh/python-executor
Environment Python 3.10, CPU-only
RAM 8GB (default) / 16GB (high_memory)
Timeout 1-300 seconds (default: 30)

Input Schema

{
  "code": "print('Hello World!')",
  "timeout": 30,
  "capture_output": true,
  "working_dir": null
}

Pre-installed Libraries

Web Scraping & HTTP

  • requests, httpx, aiohttp – HTTP clients
  • beautifulsoup4, lxml – HTML/XML parsing
  • selenium, playwright – Browser automation
  • scrapy – Web scraping framework

Data Processing

  • numpy, pandas, scipy – Numerical computing
  • matplotlib, seaborn, plotly – Visualization

Image Processing

  • pillow, opencv-python-headless – Image manipulation
  • scikit-image, imageio – Image algorithms

Video & Audio

  • moviepy – Video editing
  • av (PyAV), ffmpeg-python – Video processing
  • pydub – Audio manipulation

3D Processing

  • trimesh, open3d – 3D mesh processing
  • numpy-stl, meshio, pyvista – 3D file formats

Documents & Graphics

  • svgwrite, cairosvg – SVG creation
  • reportlab, pypdf2 – PDF generation

Examples

Web Scraping

infsh app run infsh/python-executor --input '{
  "code": "import requests\nfrom bs4 import BeautifulSoup\n\nresponse = requests.get(\"https://example.com\")\nsoup = BeautifulSoup(response.content, \"html.parser\")\nprint(soup.find(\"title\").text)"
}'

Data Analysis with Visualization

infsh app run infsh/python-executor --input '{
  "code": "import pandas as pd\nimport matplotlib.pyplot as plt\n\ndata = {\"name\": [\"Alice\", \"Bob\"], \"sales\": [100, 150]}\ndf = pd.DataFrame(data)\n\nplt.bar(df[\"name\"], df[\"sales\"])\nplt.savefig(\"outputs/chart.png\")\nprint(\"Chart saved!\")"
}'

Image Processing

infsh app run infsh/python-executor --input '{
  "code": "from PIL import Image\nimport numpy as np\n\n# Create gradient image\narr = np.linspace(0, 255, 256*256, dtype=np.uint8).reshape(256, 256)\nimg = Image.fromarray(arr, mode=\"L\")\nimg.save(\"outputs/gradient.png\")\nprint(\"Image created!\")"
}'

Video Creation

infsh app run infsh/python-executor --input '{
  "code": "from moviepy.editor import ColorClip, TextClip, CompositeVideoClip\n\nclip = ColorClip(size=(640, 480), color=(0, 100, 200), duration=3)\ntxt = TextClip(\"Hello!\", fontsize=70, color=\"white\").set_position(\"center\").set_duration(3)\nvideo = CompositeVideoClip([clip, txt])\nvideo.write_videofile(\"outputs/hello.mp4\", fps=24)\nprint(\"Video created!\")",
  "timeout": 120
}'

3D Model Processing

infsh app run infsh/python-executor --input '{
  "code": "import trimesh\n\nsphere = trimesh.creation.icosphere(subdivisions=3, radius=1.0)\nsphere.export(\"outputs/sphere.stl\")\nprint(f\"Created sphere with {len(sphere.vertices)} vertices\")"
}'

API Calls

infsh app run infsh/python-executor --input '{
  "code": "import requests\nimport json\n\nresponse = requests.get(\"https://api.github.com/users/octocat\")\ndata = response.json()\nprint(json.dumps(data, indent=2))"
}'

File Output

Files saved to outputs/ are automatically returned:

# These files will be in the response
plt.savefig('outputs/chart.png')
df.to_csv('outputs/data.csv')
video.write_videofile('outputs/video.mp4')
mesh.export('outputs/model.stl')

Variants

# Default (8GB RAM)
infsh app run infsh/python-executor --input input.json

# High memory (16GB RAM) for large datasets
infsh app run infsh/python-executor@high_memory --input input.json

Use Cases

  • Web scraping – Extract data from websites
  • Data analysis – Process and visualize datasets
  • Image manipulation – Resize, crop, composite images
  • Video creation – Generate videos with text overlays
  • 3D processing – Load, transform, export 3D models
  • API integration – Call external APIs
  • PDF generation – Create reports and documents
  • Automation – Run any Python script

Important Notes

  • CPU-only – No GPU/ML libraries (use dedicated AI apps for that)
  • Safe execution – Runs in isolated subprocess
  • Non-interactive – Use plt.savefig() not plt.show()
  • File detection – Output files are auto-detected and returned

Related Skills

# AI image generation (for ML-based images)
npx skills add inference-sh/skills@ai-image-generation

# AI video generation (for ML-based videos)
npx skills add inference-sh/skills@ai-video-generation

# LLM models (for text generation)
npx skills add inference-sh/skills@llm-models

Documentation