mission-control

📁 0xindiebruh/openclaw-mission-control-skill 📅 6 days ago
1
总安装量
1
周安装量
#53016
全站排名
安装命令
npx skills add https://github.com/0xindiebruh/openclaw-mission-control-skill --skill mission-control

Agent 安装分布

amp 1
opencode 1
cursor 1
codex 1
github-copilot 1

Skill 文档

Mission Control

Coordinate a team of AI agents using a Kanban-style task board with HTTP API.

Overview

Mission Control lets you run multiple AI agents that collaborate on tasks:

  • Team Lead: Creates and assigns tasks, reviews completed work
  • Worker Agents: Poll for tasks via heartbeat, execute work, log progress
  • Kanban Board: Visual task management at http://localhost:8080
  • HTTP API: Agents interact via REST endpoints
  • Local Storage: All data stored in JSON files — no external database needed

Quick Start

1. Install the Kanban Board

# Clone the Mission Control app
git clone https://github.com/0xindiebruh/openclaw-mission-control.git
cd mission-control

# Install dependencies
npm install

# Start the server
npm run dev

The board runs at http://localhost:8080.

2. Configure Your Agents

Edit lib/config.ts to define your agent team:

export const AGENT_CONFIG = {
  brand: {
    name: "Mission Control",
    subtitle: "AI Agent Command Center",
  },
  agents: [
    {
      id: "lead",
      name: "Lead",
      emoji: "🎯",
      role: "Team Lead",
      focus: "Strategy, task assignment",
    },
    {
      id: "writer",
      name: "Writer",
      emoji: "✍️",
      role: "Content",
      focus: "Blog posts, documentation",
    },
    {
      id: "growth",
      name: "Growth",
      emoji: "🚀",
      role: "Marketing",
      focus: "SEO, campaigns",
    },
    {
      id: "dev",
      name: "Dev",
      emoji: "💻",
      role: "Engineering",
      focus: "Features, bugs, code",
    },
    {
      id: "ux",
      name: "UX",
      emoji: "🎨",
      role: "Product",
      focus: "Design, activation",
    },
    {
      id: "data",
      name: "Data",
      emoji: "📊",
      role: "Analytics",
      focus: "Metrics, reporting",
    },
  ] as const,
};

3. Seed the Database (First Run)

Initialize the agents in the database:

curl -X POST http://localhost:8080/api/seed

This creates agent records from your lib/config.ts configuration. Safe to run multiple times — it only adds missing agents.

4. Configure OpenClaw Multi-Agent Mode

Add each agent to your ~/.openclaw/config.json:

{
  "sessions": {
    "list": [
      {
        "id": "main",
        "default": true,
        "name": "Lead",
        "workspace": "~/.openclaw/workspace"
      },
      {
        "id": "writer",
        "name": "Writer",
        "workspace": "~/.openclaw/workspace-writer",
        "agentDir": "~/.openclaw/agents/writer/agent",
        "heartbeat": {
          "every": "15m"
        }
      },
      {
        "id": "growth",
        "name": "Growth",
        "workspace": "~/.openclaw/workspace-growth",
        "agentDir": "~/.openclaw/agents/growth/agent",
        "heartbeat": {
          "every": "15m"
        }
      },
      {
        "id": "dev",
        "name": "Dev",
        "workspace": "~/.openclaw/workspace-dev",
        "agentDir": "~/.openclaw/agents/dev/agent",
        "heartbeat": {
          "every": "15m"
        }
      }
    ]
  }
}

Key fields:

  • id: Unique agent identifier (must match an agent ID in lib/config.ts)
  • workspace: Agent’s working directory for files
  • agentDir: Contains SOUL.md, HEARTBEAT.md, and agent personality
  • heartbeat.every: Polling frequency (e.g., 5m, 15m, 1h)

5. Set up Agent Heartbeats

Each worker agent needs a HEARTBEAT.md in their agentDir:

# Agent Heartbeat

## Step 1: Check for Tasks

```bash
curl "http://localhost:8080/api/tasks/mine?agent=writer"
```

Step 2: Pick up todo tasks

curl -X POST "http://localhost:8080/api/tasks/{TASK_ID}/pick" \
  -H "Content-Type: application/json" \
  -d '{"agent": "writer"}'

Step 3: Log Progress

curl -X POST "http://localhost:8080/api/tasks/{TASK_ID}/log" \
  -H "Content-Type: application/json" \
  -d '{"agent": "writer", "action": "progress", "note": "Working on..."}'

Step 4: Complete Tasks

curl -X POST "http://localhost:8080/api/tasks/{TASK_ID}/complete" \
  -H "Content-Type: application/json" \
  -d '{
    "agent": "writer",
    "note": "Completed! Summary...",
    "deliverables": ["path/to/output.md"]
  }'

Step 5: Check for @Mentions

curl "http://localhost:8080/api/mentions?agent=writer"

Mark as read when done.


Create the agent directories:

```bash
mkdir -p ~/.openclaw/agents/{writer,growth,dev,ux,data}/agent
mkdir -p ~/.openclaw/workspace-{writer,growth,dev,ux,data}

Task Lifecycle

backlog → todo → in_progress → review → done
   │        │         │           │
   │        │         │           └─ Team Lead approves
   │        │         └─ Agent completes (→ review)
   │        └─ Agent picks up (→ in_progress)
   └─ Team Lead prioritizes (→ todo)

Team Lead Operations

Creating a Task

curl -X POST http://localhost:8080/api/tasks \
  -H "Content-Type: application/json" \
  -d '{
    "title": "Task title",
    "description": "Detailed description",
    "priority": "high",
    "assignee": "writer",
    "tags": ["tag1", "tag2"],
    "createdBy": "lead"
  }'

Priority: urgent, high, medium, low

Moving to Todo

curl -X PATCH "http://localhost:8080/api/tasks/{id}" \
  -H "Content-Type: application/json" \
  -d '{"status": "todo"}'

Approving Completed Work

curl -X PATCH "http://localhost:8080/api/tasks/{id}" \
  -H "Content-Type: application/json" \
  -d '{"status": "done"}'

Adding Deliverable Path

curl -X PATCH "http://localhost:8080/api/tasks/{id}" \
  -H "Content-Type: application/json" \
  -d '{"deliverable": "path/to/file.md"}'

Worker Agent Operations

Picking Up Tasks

curl -X POST "http://localhost:8080/api/tasks/{id}/pick" \
  -H "Content-Type: application/json" \
  -d '{"agent": "{AGENT_ID}"}'

Logging Progress

curl -X POST "http://localhost:8080/api/tasks/{id}/log" \
  -H "Content-Type: application/json" \
  -d '{
    "agent": "{AGENT_ID}",
    "action": "progress",
    "note": "Updated the widget component"
  }'

Actions: picked, progress, blocked, completed

Completing a Task

curl -X POST "http://localhost:8080/api/tasks/{id}/complete" \
  -H "Content-Type: application/json" \
  -d '{
    "agent": "{AGENT_ID}",
    "note": "Completed! Summary of changes...",
    "deliverables": ["docs/api.md", "src/feature.js"]
  }'

Deliverables render as markdown in the task view.


Comments & @Mentions

Adding a Comment

curl -X POST "http://localhost:8080/api/tasks/{id}/comments" \
  -H "Content-Type: application/json" \
  -d '{
    "author": "agent-id",
    "content": "Hey @other-agent, need your input here"
  }'

Checking for @Mentions

curl "http://localhost:8080/api/mentions?agent={AGENT_ID}"

Marking Mentions as Read

curl -X POST "http://localhost:8080/api/mentions/read" \
  -H "Content-Type: application/json" \
  -d '{"agent": "{AGENT_ID}", "all": true}'

API Reference

Tasks

Endpoint Method Description
/api/tasks GET List all tasks
/api/tasks POST Create new task
/api/tasks/{id} GET Get task detail
/api/tasks/{id} PATCH Update task fields
/api/tasks/{id} DELETE Delete task
/api/tasks/mine?agent={id} GET Agent’s assigned tasks
/api/tasks/{id}/pick POST Agent picks up task
/api/tasks/{id}/log POST Log work action
/api/tasks/{id}/complete POST Complete task (→ review)
/api/tasks/{id}/comments POST Add comment

Agents & System

Endpoint Method Description
/api/agents GET List all agents
/api/seed POST Initialize agents (first run)
/api/mentions?agent={id} GET Get unread @mentions
/api/mentions/read POST Mark mentions as read

Files

Endpoint Method Description
/api/files/{path} GET Read deliverable content

Recommended Agent Team Structure

Agent Role Responsibilities
Lead Team Lead Strategy, task creation, approvals
Writer Content Blog posts, documentation, copy
Growth Marketing SEO, campaigns, outreach
Dev Engineering Features, bugs, code
UX Product Design, activation, user flows
Data Analytics Metrics, reports, insights

Configuration

Environment Variables

Create .env in your Mission Control app directory (optional):

PORT=8080

Data Storage

All data is stored locally in the data/ directory:

File Contents
data/tasks.json All tasks, comments, work logs
data/agents.json Agent status and metadata
data/mentions.json @mention notifications

Add data/ to your .gitignore — user data shouldn’t be committed.


Example: Running a Multi-Agent Workflow

  1. Lead creates task:

    curl -X POST http://localhost:8080/api/tasks \
      -H "Content-Type: application/json" \
      -d '{"title": "Write Q1 Report", "assignee": "writer", "priority": "high"}'
    
  2. Lead moves to todo:

    curl -X PATCH http://localhost:8080/api/tasks/123 \
      -d '{"status": "todo"}'
    
  3. Writer picks up via heartbeat:

    curl -X POST http://localhost:8080/api/tasks/123/pick \
      -d '{"agent": "writer"}'
    
  4. Writer completes:

    curl -X POST http://localhost:8080/api/tasks/123/complete \
      -d '{"agent": "writer", "deliverables": ["reports/q1.md"]}'
    
  5. Lead reviews and approves:

    curl -X PATCH http://localhost:8080/api/tasks/123 \
      -d '{"status": "done"}'
    

Tips

  • Heartbeat frequency: 15 minutes is a good default
  • Priority order: Agents should work urgent → high → medium → low
  • Deliverables: Include all file paths modified in the task
  • @Mentions: Use to coordinate between agents on dependencies
  • Isolation: Each agent has its own workspace for safety
  • Storage: Data persists in data/ directory — back it up if needed

Resources