mission-control
npx skills add https://github.com/0xindiebruh/openclaw-mission-control-skill --skill mission-control
Agent 安装分布
Skill 文档
Mission Control
Coordinate a team of AI agents using a Kanban-style task board with HTTP API.
Overview
Mission Control lets you run multiple AI agents that collaborate on tasks:
- Team Lead: Creates and assigns tasks, reviews completed work
- Worker Agents: Poll for tasks via heartbeat, execute work, log progress
- Kanban Board: Visual task management at
http://localhost:8080 - HTTP API: Agents interact via REST endpoints
- Local Storage: All data stored in JSON files â no external database needed
Quick Start
1. Install the Kanban Board
# Clone the Mission Control app
git clone https://github.com/0xindiebruh/openclaw-mission-control.git
cd mission-control
# Install dependencies
npm install
# Start the server
npm run dev
The board runs at http://localhost:8080.
2. Configure Your Agents
Edit lib/config.ts to define your agent team:
export const AGENT_CONFIG = {
brand: {
name: "Mission Control",
subtitle: "AI Agent Command Center",
},
agents: [
{
id: "lead",
name: "Lead",
emoji: "ð¯",
role: "Team Lead",
focus: "Strategy, task assignment",
},
{
id: "writer",
name: "Writer",
emoji: "âï¸",
role: "Content",
focus: "Blog posts, documentation",
},
{
id: "growth",
name: "Growth",
emoji: "ð",
role: "Marketing",
focus: "SEO, campaigns",
},
{
id: "dev",
name: "Dev",
emoji: "ð»",
role: "Engineering",
focus: "Features, bugs, code",
},
{
id: "ux",
name: "UX",
emoji: "ð¨",
role: "Product",
focus: "Design, activation",
},
{
id: "data",
name: "Data",
emoji: "ð",
role: "Analytics",
focus: "Metrics, reporting",
},
] as const,
};
3. Seed the Database (First Run)
Initialize the agents in the database:
curl -X POST http://localhost:8080/api/seed
This creates agent records from your lib/config.ts configuration. Safe to run multiple times â it only adds missing agents.
4. Configure OpenClaw Multi-Agent Mode
Add each agent to your ~/.openclaw/config.json:
{
"sessions": {
"list": [
{
"id": "main",
"default": true,
"name": "Lead",
"workspace": "~/.openclaw/workspace"
},
{
"id": "writer",
"name": "Writer",
"workspace": "~/.openclaw/workspace-writer",
"agentDir": "~/.openclaw/agents/writer/agent",
"heartbeat": {
"every": "15m"
}
},
{
"id": "growth",
"name": "Growth",
"workspace": "~/.openclaw/workspace-growth",
"agentDir": "~/.openclaw/agents/growth/agent",
"heartbeat": {
"every": "15m"
}
},
{
"id": "dev",
"name": "Dev",
"workspace": "~/.openclaw/workspace-dev",
"agentDir": "~/.openclaw/agents/dev/agent",
"heartbeat": {
"every": "15m"
}
}
]
}
}
Key fields:
id: Unique agent identifier (must match an agent ID inlib/config.ts)workspace: Agent’s working directory for filesagentDir: ContainsSOUL.md,HEARTBEAT.md, and agent personalityheartbeat.every: Polling frequency (e.g.,5m,15m,1h)
5. Set up Agent Heartbeats
Each worker agent needs a HEARTBEAT.md in their agentDir:
# Agent Heartbeat
## Step 1: Check for Tasks
```bash
curl "http://localhost:8080/api/tasks/mine?agent=writer"
```
Step 2: Pick up todo tasks
curl -X POST "http://localhost:8080/api/tasks/{TASK_ID}/pick" \
-H "Content-Type: application/json" \
-d '{"agent": "writer"}'
Step 3: Log Progress
curl -X POST "http://localhost:8080/api/tasks/{TASK_ID}/log" \
-H "Content-Type: application/json" \
-d '{"agent": "writer", "action": "progress", "note": "Working on..."}'
Step 4: Complete Tasks
curl -X POST "http://localhost:8080/api/tasks/{TASK_ID}/complete" \
-H "Content-Type: application/json" \
-d '{
"agent": "writer",
"note": "Completed! Summary...",
"deliverables": ["path/to/output.md"]
}'
Step 5: Check for @Mentions
curl "http://localhost:8080/api/mentions?agent=writer"
Mark as read when done.
Create the agent directories:
```bash
mkdir -p ~/.openclaw/agents/{writer,growth,dev,ux,data}/agent
mkdir -p ~/.openclaw/workspace-{writer,growth,dev,ux,data}
Task Lifecycle
backlog â todo â in_progress â review â done
â â â â
â â â ââ Team Lead approves
â â ââ Agent completes (â review)
â ââ Agent picks up (â in_progress)
ââ Team Lead prioritizes (â todo)
Team Lead Operations
Creating a Task
curl -X POST http://localhost:8080/api/tasks \
-H "Content-Type: application/json" \
-d '{
"title": "Task title",
"description": "Detailed description",
"priority": "high",
"assignee": "writer",
"tags": ["tag1", "tag2"],
"createdBy": "lead"
}'
Priority: urgent, high, medium, low
Moving to Todo
curl -X PATCH "http://localhost:8080/api/tasks/{id}" \
-H "Content-Type: application/json" \
-d '{"status": "todo"}'
Approving Completed Work
curl -X PATCH "http://localhost:8080/api/tasks/{id}" \
-H "Content-Type: application/json" \
-d '{"status": "done"}'
Adding Deliverable Path
curl -X PATCH "http://localhost:8080/api/tasks/{id}" \
-H "Content-Type: application/json" \
-d '{"deliverable": "path/to/file.md"}'
Worker Agent Operations
Picking Up Tasks
curl -X POST "http://localhost:8080/api/tasks/{id}/pick" \
-H "Content-Type: application/json" \
-d '{"agent": "{AGENT_ID}"}'
Logging Progress
curl -X POST "http://localhost:8080/api/tasks/{id}/log" \
-H "Content-Type: application/json" \
-d '{
"agent": "{AGENT_ID}",
"action": "progress",
"note": "Updated the widget component"
}'
Actions: picked, progress, blocked, completed
Completing a Task
curl -X POST "http://localhost:8080/api/tasks/{id}/complete" \
-H "Content-Type: application/json" \
-d '{
"agent": "{AGENT_ID}",
"note": "Completed! Summary of changes...",
"deliverables": ["docs/api.md", "src/feature.js"]
}'
Deliverables render as markdown in the task view.
Comments & @Mentions
Adding a Comment
curl -X POST "http://localhost:8080/api/tasks/{id}/comments" \
-H "Content-Type: application/json" \
-d '{
"author": "agent-id",
"content": "Hey @other-agent, need your input here"
}'
Checking for @Mentions
curl "http://localhost:8080/api/mentions?agent={AGENT_ID}"
Marking Mentions as Read
curl -X POST "http://localhost:8080/api/mentions/read" \
-H "Content-Type: application/json" \
-d '{"agent": "{AGENT_ID}", "all": true}'
API Reference
Tasks
| Endpoint | Method | Description |
|---|---|---|
/api/tasks |
GET | List all tasks |
/api/tasks |
POST | Create new task |
/api/tasks/{id} |
GET | Get task detail |
/api/tasks/{id} |
PATCH | Update task fields |
/api/tasks/{id} |
DELETE | Delete task |
/api/tasks/mine?agent={id} |
GET | Agent’s assigned tasks |
/api/tasks/{id}/pick |
POST | Agent picks up task |
/api/tasks/{id}/log |
POST | Log work action |
/api/tasks/{id}/complete |
POST | Complete task (â review) |
/api/tasks/{id}/comments |
POST | Add comment |
Agents & System
| Endpoint | Method | Description |
|---|---|---|
/api/agents |
GET | List all agents |
/api/seed |
POST | Initialize agents (first run) |
/api/mentions?agent={id} |
GET | Get unread @mentions |
/api/mentions/read |
POST | Mark mentions as read |
Files
| Endpoint | Method | Description |
|---|---|---|
/api/files/{path} |
GET | Read deliverable content |
Recommended Agent Team Structure
| Agent | Role | Responsibilities |
|---|---|---|
| Lead | Team Lead | Strategy, task creation, approvals |
| Writer | Content | Blog posts, documentation, copy |
| Growth | Marketing | SEO, campaigns, outreach |
| Dev | Engineering | Features, bugs, code |
| UX | Product | Design, activation, user flows |
| Data | Analytics | Metrics, reports, insights |
Configuration
Environment Variables
Create .env in your Mission Control app directory (optional):
PORT=8080
Data Storage
All data is stored locally in the data/ directory:
| File | Contents |
|---|---|
data/tasks.json |
All tasks, comments, work logs |
data/agents.json |
Agent status and metadata |
data/mentions.json |
@mention notifications |
Add data/ to your .gitignore â user data shouldn’t be committed.
Example: Running a Multi-Agent Workflow
-
Lead creates task:
curl -X POST http://localhost:8080/api/tasks \ -H "Content-Type: application/json" \ -d '{"title": "Write Q1 Report", "assignee": "writer", "priority": "high"}' -
Lead moves to todo:
curl -X PATCH http://localhost:8080/api/tasks/123 \ -d '{"status": "todo"}' -
Writer picks up via heartbeat:
curl -X POST http://localhost:8080/api/tasks/123/pick \ -d '{"agent": "writer"}' -
Writer completes:
curl -X POST http://localhost:8080/api/tasks/123/complete \ -d '{"agent": "writer", "deliverables": ["reports/q1.md"]}' -
Lead reviews and approves:
curl -X PATCH http://localhost:8080/api/tasks/123 \ -d '{"status": "done"}'
Tips
- Heartbeat frequency: 15 minutes is a good default
- Priority order: Agents should work
urgentâhighâmediumâlow - Deliverables: Include all file paths modified in the task
- @Mentions: Use to coordinate between agents on dependencies
- Isolation: Each agent has its own workspace for safety
- Storage: Data persists in
data/directory â back it up if needed
Resources
- GitHub: https://github.com/0xindiebruh/openclaw-mission-control
- Demo: See example agent setups in
/examples